Merge pull request #1 from hetaoBackend/feat/server

feat: implement basic server logic
This commit is contained in:
He Tao 2025-04-13 21:53:29 +08:00 committed by GitHub
commit a759c168fa
4 changed files with 176 additions and 0 deletions

29
server.py Normal file
View File

@ -0,0 +1,29 @@
"""
Server script for running the Lite Deep Research API.
"""
import logging
import sys
import uvicorn
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
if __name__ == "__main__":
logger.info("Starting Lite Deep Research API server")
reload = True
if sys.platform.startswith("win"):
reload = False
uvicorn.run(
"src.server:app",
host="0.0.0.0",
port=8000,
reload=reload,
log_level="info",
)

3
src/server/__init__.py Normal file
View File

@ -0,0 +1,3 @@
from .app import app
__all__ = ["app"]

107
src/server/app.py Normal file
View File

@ -0,0 +1,107 @@
import json
import logging
from typing import List, cast
from uuid import uuid4
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from langchain_core.messages import AIMessageChunk, ToolMessage
from src.graph.builder import build_graph
from src.server.chat_request import ChatMessage, ChatRequest
logger = logging.getLogger(__name__)
app = FastAPI(
title="Lite Deep Research API",
description="API for Lite Deep Research",
version="0.1.0",
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
graph = build_graph()
@app.post("/api/chat/stream")
async def chat_stream(request: ChatRequest):
thread_id = request.thread_id
if thread_id == "__default__":
thread_id = str(uuid4())
return StreamingResponse(
_astream_workflow_generator(
request.model_dump()["messages"],
thread_id,
request.max_plan_iterations,
request.max_step_num,
),
media_type="text/event-stream",
)
async def _astream_workflow_generator(
messages: List[ChatMessage],
thread_id: str,
max_plan_iterations: int,
max_step_num: int,
):
async for agent, _, event_data in graph.astream(
{"messages": messages},
config={
"thread_id": thread_id,
"max_plan_iterations": max_plan_iterations,
"max_step_num": max_step_num,
},
stream_mode=["messages"],
subgraphs=True,
):
message_chunk, message_metadata = cast(
tuple[AIMessageChunk, dict[str, any]], event_data
)
event_stream_message: dict[str, any] = {
"thread_id": thread_id,
"agent": agent[0].split(":")[0],
"id": message_chunk.id,
"role": "assistant",
"content": message_chunk.content,
}
if message_chunk.response_metadata.get("finish_reason"):
event_stream_message["finish_reason"] = message_chunk.response_metadata.get(
"finish_reason"
)
if isinstance(message_chunk, ToolMessage):
# Tool Message - Return the result of the tool call
event_stream_message["tool_call_id"] = message_chunk.tool_call_id
yield _make_event("tool_call_result", event_stream_message)
else:
# AI Message - Raw message tokens
if message_chunk.tool_calls:
# AI Message - Tool Call
event_stream_message["tool_calls"] = message_chunk.tool_calls
event_stream_message["tool_call_chunks"] = (
message_chunk.tool_call_chunks
)
yield _make_event("tool_calls", event_stream_message)
elif message_chunk.tool_call_chunks:
# AI Message - Tool Call Chunks
event_stream_message["tool_call_chunks"] = (
message_chunk.tool_call_chunks
)
yield _make_event("tool_call_chunks", event_stream_message)
else:
# AI Message - Raw message tokens
yield _make_event("message_chunk", event_stream_message)
def _make_event(event_type: str, data: dict[str, any]):
if data.get("content") == "":
data.pop("content")
return f"event: {event_type}\ndata: {json.dumps(data, ensure_ascii=False)}\n\n"

View File

@ -0,0 +1,37 @@
from typing import List, Optional, Union
from pydantic import BaseModel, Field
class ContentItem(BaseModel):
type: str = Field(..., description="The type of content (text, image, etc.)")
text: Optional[str] = Field(None, description="The text content if type is 'text'")
image_url: Optional[str] = Field(
None, description="The image URL if type is 'image'"
)
class ChatMessage(BaseModel):
role: str = Field(
..., description="The role of the message sender (user or assistant)"
)
content: Union[str, List[ContentItem]] = Field(
...,
description="The content of the message, either a string or a list of content items",
)
class ChatRequest(BaseModel):
messages: List[ChatMessage] = Field(
..., description="History of messages between the user and the assistant"
)
debug: Optional[bool] = Field(False, description="Whether to enable debug logging")
thread_id: Optional[str] = Field(
"__default__", description="A specific conversation identifier"
)
max_plan_iterations: Optional[int] = Field(
1, description="The maximum number of plan iterations"
)
max_step_num: Optional[int] = Field(
3, description="The maximum number of steps in a plan"
)