mirror of
https://git.mirrors.martin98.com/https://github.com/bytedance/deer-flow
synced 2025-08-18 01:35:55 +08:00
Merge pull request #1 from hetaoBackend/feat/server
feat: implement basic server logic
This commit is contained in:
commit
a759c168fa
29
server.py
Normal file
29
server.py
Normal file
@ -0,0 +1,29 @@
|
||||
"""
|
||||
Server script for running the Lite Deep Research API.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import sys
|
||||
|
||||
import uvicorn
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if __name__ == "__main__":
|
||||
logger.info("Starting Lite Deep Research API server")
|
||||
reload = True
|
||||
if sys.platform.startswith("win"):
|
||||
reload = False
|
||||
uvicorn.run(
|
||||
"src.server:app",
|
||||
host="0.0.0.0",
|
||||
port=8000,
|
||||
reload=reload,
|
||||
log_level="info",
|
||||
)
|
3
src/server/__init__.py
Normal file
3
src/server/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .app import app
|
||||
|
||||
__all__ = ["app"]
|
107
src/server/app.py
Normal file
107
src/server/app.py
Normal file
@ -0,0 +1,107 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import List, cast
|
||||
from uuid import uuid4
|
||||
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.responses import StreamingResponse
|
||||
from langchain_core.messages import AIMessageChunk, ToolMessage
|
||||
|
||||
from src.graph.builder import build_graph
|
||||
from src.server.chat_request import ChatMessage, ChatRequest
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
app = FastAPI(
|
||||
title="Lite Deep Research API",
|
||||
description="API for Lite Deep Research",
|
||||
version="0.1.0",
|
||||
)
|
||||
|
||||
# Add CORS middleware
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"], # Allows all origins
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"], # Allows all methods
|
||||
allow_headers=["*"], # Allows all headers
|
||||
)
|
||||
|
||||
graph = build_graph()
|
||||
|
||||
|
||||
@app.post("/api/chat/stream")
|
||||
async def chat_stream(request: ChatRequest):
|
||||
thread_id = request.thread_id
|
||||
if thread_id == "__default__":
|
||||
thread_id = str(uuid4())
|
||||
return StreamingResponse(
|
||||
_astream_workflow_generator(
|
||||
request.model_dump()["messages"],
|
||||
thread_id,
|
||||
request.max_plan_iterations,
|
||||
request.max_step_num,
|
||||
),
|
||||
media_type="text/event-stream",
|
||||
)
|
||||
|
||||
|
||||
async def _astream_workflow_generator(
|
||||
messages: List[ChatMessage],
|
||||
thread_id: str,
|
||||
max_plan_iterations: int,
|
||||
max_step_num: int,
|
||||
):
|
||||
async for agent, _, event_data in graph.astream(
|
||||
{"messages": messages},
|
||||
config={
|
||||
"thread_id": thread_id,
|
||||
"max_plan_iterations": max_plan_iterations,
|
||||
"max_step_num": max_step_num,
|
||||
},
|
||||
stream_mode=["messages"],
|
||||
subgraphs=True,
|
||||
):
|
||||
message_chunk, message_metadata = cast(
|
||||
tuple[AIMessageChunk, dict[str, any]], event_data
|
||||
)
|
||||
event_stream_message: dict[str, any] = {
|
||||
"thread_id": thread_id,
|
||||
"agent": agent[0].split(":")[0],
|
||||
"id": message_chunk.id,
|
||||
"role": "assistant",
|
||||
"content": message_chunk.content,
|
||||
}
|
||||
if message_chunk.response_metadata.get("finish_reason"):
|
||||
event_stream_message["finish_reason"] = message_chunk.response_metadata.get(
|
||||
"finish_reason"
|
||||
)
|
||||
if isinstance(message_chunk, ToolMessage):
|
||||
# Tool Message - Return the result of the tool call
|
||||
event_stream_message["tool_call_id"] = message_chunk.tool_call_id
|
||||
yield _make_event("tool_call_result", event_stream_message)
|
||||
else:
|
||||
# AI Message - Raw message tokens
|
||||
if message_chunk.tool_calls:
|
||||
# AI Message - Tool Call
|
||||
event_stream_message["tool_calls"] = message_chunk.tool_calls
|
||||
event_stream_message["tool_call_chunks"] = (
|
||||
message_chunk.tool_call_chunks
|
||||
)
|
||||
yield _make_event("tool_calls", event_stream_message)
|
||||
elif message_chunk.tool_call_chunks:
|
||||
# AI Message - Tool Call Chunks
|
||||
event_stream_message["tool_call_chunks"] = (
|
||||
message_chunk.tool_call_chunks
|
||||
)
|
||||
yield _make_event("tool_call_chunks", event_stream_message)
|
||||
else:
|
||||
# AI Message - Raw message tokens
|
||||
yield _make_event("message_chunk", event_stream_message)
|
||||
|
||||
|
||||
def _make_event(event_type: str, data: dict[str, any]):
|
||||
if data.get("content") == "":
|
||||
data.pop("content")
|
||||
return f"event: {event_type}\ndata: {json.dumps(data, ensure_ascii=False)}\n\n"
|
37
src/server/chat_request.py
Normal file
37
src/server/chat_request.py
Normal file
@ -0,0 +1,37 @@
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class ContentItem(BaseModel):
|
||||
type: str = Field(..., description="The type of content (text, image, etc.)")
|
||||
text: Optional[str] = Field(None, description="The text content if type is 'text'")
|
||||
image_url: Optional[str] = Field(
|
||||
None, description="The image URL if type is 'image'"
|
||||
)
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: str = Field(
|
||||
..., description="The role of the message sender (user or assistant)"
|
||||
)
|
||||
content: Union[str, List[ContentItem]] = Field(
|
||||
...,
|
||||
description="The content of the message, either a string or a list of content items",
|
||||
)
|
||||
|
||||
|
||||
class ChatRequest(BaseModel):
|
||||
messages: List[ChatMessage] = Field(
|
||||
..., description="History of messages between the user and the assistant"
|
||||
)
|
||||
debug: Optional[bool] = Field(False, description="Whether to enable debug logging")
|
||||
thread_id: Optional[str] = Field(
|
||||
"__default__", description="A specific conversation identifier"
|
||||
)
|
||||
max_plan_iterations: Optional[int] = Field(
|
||||
1, description="The maximum number of plan iterations"
|
||||
)
|
||||
max_step_num: Optional[int] = Field(
|
||||
3, description="The maximum number of steps in a plan"
|
||||
)
|
Loading…
x
Reference in New Issue
Block a user