// Copyright 2016 The Draco Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #ifndef DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_MULTI_PARALLELOGRAM_H_ #define DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_MULTI_PARALLELOGRAM_H_ #include "compression/attributes/prediction_schemes/mesh_prediction_scheme.h" #include "compression/attributes/prediction_schemes/mesh_prediction_scheme_parallelogram_shared.h" namespace draco { // Multi parallelogram prediction predicts attribute values using information // from all opposite faces to the predicted vertex, compared to the standard // prediction scheme, where only one opposite face is used (see // prediction_scheme_parallelogram.h). This approach is generally slower than // the standard parallelogram prediction, but it usually results in better // prediction (5 - 20% based on the quantization level. Better gains can be // achieved when more aggressive quantization is used). // TODO(ostava): Rename. The new name should reflect the fact that we need mesh // data. template class MeshPredictionSchemeMultiParallelogram : public MeshPredictionScheme { public: using CorrType = typename PredictionScheme::CorrType; using CornerTable = typename MeshDataT::CornerTable; explicit MeshPredictionSchemeMultiParallelogram( const PointAttribute *attribute) : MeshPredictionScheme(attribute) {} MeshPredictionSchemeMultiParallelogram(const PointAttribute *attribute, const TransformT &transform, const MeshDataT &mesh_data) : MeshPredictionScheme( attribute, transform, mesh_data) {} bool Encode(const DataTypeT *in_data, CorrType *out_corr, int size, int num_components, const PointIndex *entry_to_point_id_map) override; bool Decode(const CorrType *in_corr, DataTypeT *out_data, int size, int num_components, const PointIndex *entry_to_point_id_map) override; PredictionSchemeMethod GetPredictionMethod() const override { return MESH_PREDICTION_MULTI_PARALLELOGRAM; } bool IsInitialized() const override { return this->mesh_data().IsInitialized(); } }; template bool MeshPredictionSchemeMultiParallelogram:: Encode(const DataTypeT *in_data, CorrType *out_corr, int size, int num_components, const PointIndex * /* entry_to_point_id_map */) { this->transform().InitializeEncoding(in_data, size, num_components); const CornerTable *const table = this->mesh_data().corner_table(); const std::vector *const vertex_to_data_map = this->mesh_data().vertex_to_data_map(); std::unique_ptr pred_vals(new DataTypeT[num_components]()); std::unique_ptr parallelogram_pred_vals( new DataTypeT[num_components]()); // We start processing from the end because this prediction uses data from // previous entries that could be overwritten when an entry is processed. for (int p = this->mesh_data().data_to_corner_map()->size() - 1; p > 0; --p) { const CornerIndex start_corner_id = this->mesh_data().data_to_corner_map()->at(p); // Go over all corners attached to the vertex and compute the predicted // value from the parallelograms defined by their opposite faces. CornerIndex corner_id(start_corner_id); int num_parallelograms = 0; for (int i = 0; i < num_components; ++i) { pred_vals[i] = static_cast(0); } while (corner_id >= 0) { if (ComputeParallelogramPrediction( p, corner_id, table, *vertex_to_data_map, in_data, num_components, parallelogram_pred_vals.get())) { for (int c = 0; c < num_components; ++c) { pred_vals[c] += parallelogram_pred_vals[c]; } ++num_parallelograms; } // Proceed to the next corner attached to the vertex. corner_id = table->SwingRight(corner_id); if (corner_id == start_corner_id) { corner_id = kInvalidCornerIndex; } } const int dst_offset = p * num_components; if (num_parallelograms == 0) { // No parallelogram was valid. // We use the last encoded point as a reference. const int src_offset = (p - 1) * num_components; this->transform().ComputeCorrection( in_data + dst_offset, in_data + src_offset, out_corr, dst_offset); } else { // Compute the correction from the predicted value. for (int c = 0; c < num_components; ++c) { pred_vals[c] /= num_parallelograms; } this->transform().ComputeCorrection(in_data + dst_offset, pred_vals.get(), out_corr, dst_offset); } } // First element is always fixed because it cannot be predicted. for (int i = 0; i < num_components; ++i) { pred_vals[i] = static_cast(0); } this->transform().ComputeCorrection(in_data, pred_vals.get(), out_corr, 0); return true; } template bool MeshPredictionSchemeMultiParallelogram:: Decode(const CorrType *in_corr, DataTypeT *out_data, int /* size */, int num_components, const PointIndex * /* entry_to_point_id_map */) { this->transform().InitializeDecoding(num_components); std::unique_ptr pred_vals(new DataTypeT[num_components]()); std::unique_ptr parallelogram_pred_vals( new DataTypeT[num_components]()); this->transform().ComputeOriginalValue(pred_vals.get(), in_corr, out_data, 0); const CornerTable *const table = this->mesh_data().corner_table(); const std::vector *const vertex_to_data_map = this->mesh_data().vertex_to_data_map(); const int corner_map_size = this->mesh_data().data_to_corner_map()->size(); for (int p = 1; p < corner_map_size; ++p) { const CornerIndex start_corner_id = this->mesh_data().data_to_corner_map()->at(p); CornerIndex corner_id(start_corner_id); int num_parallelograms = 0; for (int i = 0; i < num_components; ++i) { pred_vals[i] = static_cast(0); } while (corner_id >= 0) { if (ComputeParallelogramPrediction( p, corner_id, table, *vertex_to_data_map, out_data, num_components, parallelogram_pred_vals.get())) { for (int c = 0; c < num_components; ++c) { pred_vals[c] += parallelogram_pred_vals[c]; } ++num_parallelograms; } corner_id = table->SwingRight(corner_id); if (corner_id == start_corner_id) { corner_id = kInvalidCornerIndex; } } const int dst_offset = p * num_components; if (num_parallelograms == 0) { // No parallelogram was valid. // We use the last decoded point as a reference. const int src_offset = (p - 1) * num_components; this->transform().ComputeOriginalValue(out_data + src_offset, in_corr, out_data + dst_offset, dst_offset); } else { // Compute the correction from the predicted value. for (int c = 0; c < num_components; ++c) { pred_vals[c] /= num_parallelograms; } this->transform().ComputeOriginalValue(pred_vals.get(), in_corr, out_data + dst_offset, dst_offset); } } return true; } } // namespace draco #endif // DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_MULTI_PARALLELOGRAM_H_