// Copyright 2016 The Draco Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "core/adaptive_rans_coding.h" #include namespace draco { uint8_t clamp_probability(double p) { DCHECK_LE(p, 1.0); DCHECK_LE(0.0, p); uint32_t p_int = static_cast((p * 256) + 0.5); p_int -= (p_int == 256); p_int += (p_int == 0); return static_cast(p_int); } double update_probability(double old_p, bool bit) { static constexpr double w = 128.0; static constexpr double w0 = (w - 1.0) / w; static constexpr double w1 = 1.0 / w; return old_p * w0 + (!bit) * w1; } AdaptiveRAnsBitEncoder::AdaptiveRAnsBitEncoder() {} AdaptiveRAnsBitEncoder::~AdaptiveRAnsBitEncoder() { Clear(); } void AdaptiveRAnsBitEncoder::StartEncoding() { Clear(); } void AdaptiveRAnsBitEncoder::EndEncoding(EncoderBuffer *target_buffer) { // Buffer for ans to write. std::vector buffer(bits_.size() + 16); AnsCoder ans_coder; ans_write_init(&ans_coder, buffer.data()); // Unfortunaetly we have to encode the bits in reversed order, while the // probabilities that should be given are those of the forward sequence. double p0_f = 0.5; std::vector p0s; p0s.reserve(bits_.size()); for (bool b : bits_) { p0s.push_back(clamp_probability(p0_f)); p0_f = update_probability(p0_f, b); } auto bit = bits_.rbegin(); auto pit = p0s.rbegin(); while (bit != bits_.rend()) { rabs_write(&ans_coder, *bit, *pit); ++bit; ++pit; } const uint32_t size_in_bytes = ans_write_end(&ans_coder); target_buffer->Encode(size_in_bytes); target_buffer->Encode(buffer.data(), size_in_bytes); Clear(); } void AdaptiveRAnsBitEncoder::Clear() { bits_.clear(); } AdaptiveRAnsBitDecoder::AdaptiveRAnsBitDecoder() : p0_f_(0.5) {} AdaptiveRAnsBitDecoder::~AdaptiveRAnsBitDecoder() { Clear(); } void AdaptiveRAnsBitDecoder::StartDecoding(DecoderBuffer *source_buffer) { Clear(); uint32_t size_in_bytes; source_buffer->Decode(&size_in_bytes); ans_read_init(&ans_decoder_, reinterpret_cast(const_cast( source_buffer->data_head())), size_in_bytes); source_buffer->Advance(size_in_bytes); } // TODO(hemmer): Consider moving these to the .h file. bool AdaptiveRAnsBitDecoder::DecodeNextBit() { const uint8_t p0 = clamp_probability(p0_f_); const bool bit = static_cast(rabs_read(&ans_decoder_, p0)); p0_f_ = update_probability(p0_f_, bit); return bit; } void AdaptiveRAnsBitDecoder::DecodeBits32(int nbits, uint32_t *value) { DCHECK_EQ(true, nbits <= 32); DCHECK_EQ(true, nbits > 0); uint32_t result = 0; while (nbits) { result = (result << 1) + DecodeNextBit(); --nbits; } *value = result; } void AdaptiveRAnsBitDecoder::Clear() { ans_read_end(&ans_decoder_); p0_f_ = 0.5; } } // namespace draco