// Copyright 2016 The Draco Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #ifndef DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_PARALLELOGRAM_H_ #define DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_PARALLELOGRAM_H_ #include "compression/attributes/prediction_schemes/mesh_prediction_scheme.h" #include "compression/attributes/prediction_schemes/mesh_prediction_scheme_parallelogram_shared.h" namespace draco { // Parallelogram prediction predicts an attribute value V from three vertices // on the opposite face to the predicted vertex. The values on the three // vertices are used to construct a parallelogram V' = O - A - B, where O is the // value on the oppoiste vertex, and A, B are values on the shared vertices: // V // / \ // / \ // / \ // A-------B // \ / // \ / // \ / // O template class MeshPredictionSchemeParallelogram : public MeshPredictionScheme { public: using CorrType = typename PredictionScheme::CorrType; using CornerTable = typename MeshDataT::CornerTable; explicit MeshPredictionSchemeParallelogram(const PointAttribute *attribute) : MeshPredictionScheme(attribute) {} MeshPredictionSchemeParallelogram(const PointAttribute *attribute, const TransformT &transform, const MeshDataT &mesh_data) : MeshPredictionScheme( attribute, transform, mesh_data) {} bool Encode(const DataTypeT *in_data, CorrType *out_corr, int size, int num_components, const PointIndex *entry_to_point_id_map) override; bool Decode(const CorrType *in_corr, DataTypeT *out_data, int size, int num_components, const PointIndex *entry_to_point_id_map) override; PredictionSchemeMethod GetPredictionMethod() const override { return MESH_PREDICTION_PARALLELOGRAM; } bool IsInitialized() const override { return this->mesh_data().IsInitialized(); } }; template bool MeshPredictionSchemeParallelogram:: Encode(const DataTypeT *in_data, CorrType *out_corr, int size, int num_components, const PointIndex * /* entry_to_point_id_map */) { this->transform().InitializeEncoding(in_data, size, num_components); std::unique_ptr pred_vals(new DataTypeT[num_components]()); // We start processing from the end because this prediction uses data from // previous entries that could be overwritten when an entry is processed. const CornerTable *const table = this->mesh_data().corner_table(); const std::vector *const vertex_to_data_map = this->mesh_data().vertex_to_data_map(); for (int p = this->mesh_data().data_to_corner_map()->size() - 1; p > 0; --p) { const CornerIndex corner_id = this->mesh_data().data_to_corner_map()->at(p); const int dst_offset = p * num_components; if (!ComputeParallelogramPrediction(p, corner_id, table, *vertex_to_data_map, in_data, num_components, pred_vals.get())) { // Parallelogram could not be computed, Possible because some of the // vertices are not valid (not encoded yet). // We use the last encoded point as a reference (delta coding). const int src_offset = (p - 1) * num_components; this->transform().ComputeCorrection( in_data + dst_offset, in_data + src_offset, out_corr, dst_offset); } else { // Apply the parallelogram prediction. this->transform().ComputeCorrection(in_data + dst_offset, pred_vals.get(), out_corr, dst_offset); } } // First element is always fixed because it cannot be predicted. for (int i = 0; i < num_components; ++i) { pred_vals[i] = static_cast(0); } this->transform().ComputeCorrection(in_data, pred_vals.get(), out_corr, 0); return true; } template bool MeshPredictionSchemeParallelogram:: Decode(const CorrType *in_corr, DataTypeT *out_data, int /* size */, int num_components, const PointIndex * /* entry_to_point_id_map */) { this->transform().InitializeDecoding(num_components); const CornerTable *const table = this->mesh_data().corner_table(); const std::vector *const vertex_to_data_map = this->mesh_data().vertex_to_data_map(); std::unique_ptr pred_vals(new DataTypeT[num_components]()); // Restore the first value. this->transform().ComputeOriginalValue(pred_vals.get(), in_corr, out_data, 0); const int corner_map_size = this->mesh_data().data_to_corner_map()->size(); for (int p = 1; p < corner_map_size; ++p) { const CornerIndex corner_id = this->mesh_data().data_to_corner_map()->at(p); const int dst_offset = p * num_components; if (!ComputeParallelogramPrediction(p, corner_id, table, *vertex_to_data_map, out_data, num_components, pred_vals.get())) { // Parallelogram could not be computed, Possible because some of the // vertices are not valid (not encoded yet). // We use the last encoded point as a reference (delta coding). const int src_offset = (p - 1) * num_components; this->transform().ComputeOriginalValue(out_data + src_offset, in_corr, out_data + dst_offset, dst_offset); } else { // Apply the parallelogram prediction. this->transform().ComputeOriginalValue(pred_vals.get(), in_corr, out_data + dst_offset, dst_offset); } } return true; } } // namespace draco #endif // DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_PARALLELOGRAM_H_