draco/compression/attributes/prediction_schemes/mesh_prediction_scheme_parallelogram.h
2016-12-12 16:39:06 -08:00

168 lines
7.5 KiB
C++

// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_PARALLELOGRAM_H_
#define DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_PARALLELOGRAM_H_
#include "compression/attributes/prediction_schemes/mesh_prediction_scheme.h"
#include "compression/attributes/prediction_schemes/mesh_prediction_scheme_parallelogram_shared.h"
namespace draco {
// Parallelogram prediction predicts an attribute value V from three vertices
// on the opposite face to the predicted vertex. The values on the three
// vertices are used to construct a parallelogram V' = O - A - B, where O is the
// value on the oppoiste vertex, and A, B are values on the shared vertices:
// V
// / \
// / \
// / \
// A-------B
// \ /
// \ /
// \ /
// O
template <typename DataTypeT, class TransformT, class MeshDataT>
class MeshPredictionSchemeParallelogram
: public MeshPredictionScheme<DataTypeT, TransformT, MeshDataT> {
public:
using CorrType = typename PredictionScheme<DataTypeT, TransformT>::CorrType;
using CornerTable = typename MeshDataT::CornerTable;
explicit MeshPredictionSchemeParallelogram(const PointAttribute *attribute)
: MeshPredictionScheme<DataTypeT, TransformT, MeshDataT>(attribute) {}
MeshPredictionSchemeParallelogram(const PointAttribute *attribute,
const TransformT &transform,
const MeshDataT &mesh_data)
: MeshPredictionScheme<DataTypeT, TransformT, MeshDataT>(
attribute, transform, mesh_data) {}
bool Encode(const DataTypeT *in_data, CorrType *out_corr, int size,
int num_components,
const PointIndex *entry_to_point_id_map) override;
bool Decode(const CorrType *in_corr, DataTypeT *out_data, int size,
int num_components,
const PointIndex *entry_to_point_id_map) override;
PredictionSchemeMethod GetPredictionMethod() const override {
return MESH_PREDICTION_PARALLELOGRAM;
}
bool IsInitialized() const override {
return this->mesh_data().IsInitialized();
}
};
template <typename DataTypeT, class TransformT, class MeshDataT>
bool MeshPredictionSchemeParallelogram<DataTypeT, TransformT, MeshDataT>::
Encode(const DataTypeT *in_data, CorrType *out_corr, int size,
int num_components, const PointIndex *entry_to_point_id_map) {
this->transform().InitializeEncoding(in_data, size, num_components);
std::unique_ptr<DataTypeT[]> pred_vals(new DataTypeT[num_components]());
// We start processing from the end because this prediction uses data from
// previous entries that could be overwritten when an entry is processed.
const CornerTable *const table = this->mesh_data().corner_table();
const std::vector<int32_t> *const vertex_to_data_map =
this->mesh_data().vertex_to_data_map();
for (int p = this->mesh_data().data_to_corner_map()->size() - 1; p > 0; --p) {
const CornerIndex corner_id = this->mesh_data().data_to_corner_map()->at(p);
// Initialize the vertex ids to "p" which ensures that if the opposite
// corner does not exist we will not use the vertices to predict the
// encoded value.
int vert_opp = p, vert_next = p, vert_prev = p;
const CornerIndex opp_corner = table->Opposite(corner_id);
if (opp_corner >= 0) {
// Get vertices on the opposite face.
GetParallelogramEntries(opp_corner, table, *vertex_to_data_map, &vert_opp,
&vert_next, &vert_prev);
}
const int dst_offset = p * num_components;
if (vert_opp >= p || vert_next >= p || vert_prev >= p) {
// Some of the vertices are not valid (not encoded yet).
// We use the last encoded point as a reference.
const int src_offset = (p - 1) * num_components;
this->transform().ComputeCorrection(
in_data + dst_offset, in_data + src_offset, out_corr, dst_offset);
} else {
// Apply the parallelogram prediction.
const int v_opp_off = vert_opp * num_components;
const int v_next_off = vert_next * num_components;
const int v_prev_off = vert_prev * num_components;
for (int c = 0; c < num_components; ++c) {
pred_vals[c] = (in_data[v_next_off + c] + in_data[v_prev_off + c]) -
in_data[v_opp_off + c];
}
this->transform().ComputeCorrection(in_data + dst_offset, pred_vals.get(),
out_corr, dst_offset);
}
}
// First element is always fixed because it cannot be predicted.
for (int i = 0; i < num_components; ++i) {
pred_vals[i] = static_cast<DataTypeT>(0);
}
this->transform().ComputeCorrection(in_data, pred_vals.get(), out_corr, 0);
return true;
}
template <typename DataTypeT, class TransformT, class MeshDataT>
bool MeshPredictionSchemeParallelogram<DataTypeT, TransformT, MeshDataT>::
Decode(const CorrType *in_corr, DataTypeT *out_data, int size,
int num_components, const PointIndex *entry_to_point_id_map) {
this->transform().InitializeDecoding(num_components);
const CornerTable *const table = this->mesh_data().corner_table();
const std::vector<int32_t> *const vertex_to_data_map =
this->mesh_data().vertex_to_data_map();
std::unique_ptr<DataTypeT[]> pred_vals(new DataTypeT[num_components]());
// Restore the first value.
this->transform().ComputeOriginalValue(pred_vals.get(), in_corr, out_data, 0);
for (int p = 1; p < this->mesh_data().data_to_corner_map()->size(); ++p) {
const CornerIndex corner_id = this->mesh_data().data_to_corner_map()->at(p);
int vert_opp = p, vert_next = p, vert_prev = p;
const CornerIndex opp_corner = table->Opposite(corner_id);
if (opp_corner >= 0) {
// Get vertices on the opposite face.
GetParallelogramEntries(opp_corner, table, *vertex_to_data_map, &vert_opp,
&vert_next, &vert_prev);
}
const int dst_offset = p * num_components;
if (vert_opp >= p || vert_next >= p || vert_prev >= p) {
// Some of the vertices are not valid (not decoded yet).
// We use the last decoded point as a reference.
const int src_offset = (p - 1) * num_components;
this->transform().ComputeOriginalValue(out_data + src_offset, in_corr,
out_data + dst_offset, dst_offset);
} else {
// Apply the parallelogram prediction.
const int v_opp_off = vert_opp * num_components;
const int v_next_off = vert_next * num_components;
const int v_prev_off = vert_prev * num_components;
for (int c = 0; c < num_components; ++c) {
pred_vals[c] = (out_data[v_next_off + c] + out_data[v_prev_off + c]) -
out_data[v_opp_off + c];
}
this->transform().ComputeOriginalValue(pred_vals.get(), in_corr,
out_data + dst_offset, dst_offset);
}
}
return true;
}
} // namespace draco
#endif // DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_MESH_PREDICTION_SCHEME_PARALLELOGRAM_H_