draco/compression/attributes/sequential_integer_attribute_decoder.cc
Ondrej Stava 73bb3c8530 Version 0.10.0 snapshot
- Improved compression for triangular meshes (~10%)
- Added WebAssembly decoder
- Code cleanup + robustness fixes
2017-04-12 12:09:14 -07:00

172 lines
5.8 KiB
C++

// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "compression/attributes/sequential_integer_attribute_decoder.h"
#include "compression/attributes/prediction_schemes/prediction_scheme_decoder_factory.h"
#include "compression/attributes/prediction_schemes/prediction_scheme_wrap_transform.h"
#include "core/symbol_decoding.h"
namespace draco {
SequentialIntegerAttributeDecoder::SequentialIntegerAttributeDecoder() {}
bool SequentialIntegerAttributeDecoder::Initialize(PointCloudDecoder *decoder,
int attribute_id) {
if (!SequentialAttributeDecoder::Initialize(decoder, attribute_id))
return false;
return true;
}
bool SequentialIntegerAttributeDecoder::DecodeValues(
const std::vector<PointIndex> &point_ids, DecoderBuffer *in_buffer) {
const int32_t num_values = point_ids.size();
// Decode prediction scheme.
int8_t prediction_scheme_method;
in_buffer->Decode(&prediction_scheme_method);
if (prediction_scheme_method != PREDICTION_NONE) {
int8_t prediction_transform_type;
in_buffer->Decode(&prediction_transform_type);
prediction_scheme_ = CreateIntPredictionScheme(
static_cast<PredictionSchemeMethod>(prediction_scheme_method),
static_cast<PredictionSchemeTransformType>(prediction_transform_type));
}
if (prediction_scheme_) {
if (!InitPredictionScheme(prediction_scheme_.get()))
return false;
}
if (!DecodeIntegerValues(point_ids, in_buffer))
return false;
if (!StoreValues(num_values))
return false;
return true;
}
std::unique_ptr<PredictionSchemeTypedInterface<int32_t>>
SequentialIntegerAttributeDecoder::CreateIntPredictionScheme(
PredictionSchemeMethod method,
PredictionSchemeTransformType transform_type) {
if (transform_type != PREDICTION_TRANSFORM_WRAP)
return nullptr; // For now we support only wrap transform.
return CreatePredictionSchemeForDecoder<
int32_t, PredictionSchemeWrapTransform<int32_t>>(method, attribute_id(),
decoder());
}
bool SequentialIntegerAttributeDecoder::DecodeIntegerValues(
const std::vector<PointIndex> &point_ids, DecoderBuffer *in_buffer) {
const int num_components = GetNumValueComponents();
if (num_components <= 0)
return false;
const int32_t num_values = point_ids.size();
values_.resize(num_values * num_components);
uint8_t compressed;
if (!in_buffer->Decode(&compressed))
return false;
if (compressed > 0) {
// Decode compressed values.
if (!DecodeSymbols(num_values * num_components, num_components, in_buffer,
reinterpret_cast<uint32_t *>(values_.data())))
return false;
} else {
// Decode the integer data directly.
// Get the number of bytes for a given entry.
uint8_t num_bytes;
if (!in_buffer->Decode(&num_bytes))
return false;
if (num_bytes == sizeof(decltype(values_)::value_type)) {
if (!in_buffer->Decode(values_.data(), sizeof(int32_t) * values_.size()))
return false;
} else {
for (uint32_t i = 0; i < values_.size(); ++i) {
in_buffer->Decode(&values_[i], num_bytes);
}
}
}
if (!values_.empty() && (prediction_scheme_ == nullptr ||
!prediction_scheme_->AreCorrectionsPositive())) {
// Convert the values back to the original signed format.
ConvertSymbolsToSignedInts(
reinterpret_cast<const uint32_t *>(values_.data()), values_.size(),
&values_[0]);
}
// If the data was encoded with a prediction scheme, we must revert it.
if (prediction_scheme_) {
if (!prediction_scheme_->DecodePredictionData(in_buffer))
return false;
if (!values_.empty()) {
if (!prediction_scheme_->Decode(values_.data(), &values_[0],
values_.size(), num_components,
point_ids.data())) {
return false;
}
}
}
return true;
}
bool SequentialIntegerAttributeDecoder::StoreValues(uint32_t num_values) {
switch (attribute()->data_type()) {
case DT_UINT8:
StoreTypedValues<uint8_t>(num_values);
break;
case DT_INT8:
StoreTypedValues<int8_t>(num_values);
break;
case DT_UINT16:
StoreTypedValues<uint16_t>(num_values);
break;
case DT_INT16:
StoreTypedValues<int16_t>(num_values);
break;
case DT_UINT32:
StoreTypedValues<uint32_t>(num_values);
break;
case DT_INT32:
StoreTypedValues<int32_t>(num_values);
break;
default:
return false;
}
return true;
}
template <typename AttributeTypeT>
void SequentialIntegerAttributeDecoder::StoreTypedValues(uint32_t num_values) {
const int num_components = attribute()->components_count();
const int entry_size = sizeof(AttributeTypeT) * num_components;
const std::unique_ptr<AttributeTypeT[]> att_val(
new AttributeTypeT[num_components]);
int val_id = 0;
int out_byte_pos = 0;
for (uint32_t i = 0; i < num_values; ++i) {
for (int c = 0; c < num_components; ++c) {
const AttributeTypeT value =
static_cast<AttributeTypeT>(values_[val_id++]);
att_val[c] = value;
}
// Store the integer value into the attribute buffer.
attribute()->buffer()->Write(out_byte_pos, att_val.get(), entry_size);
out_byte_pos += entry_size;
}
}
} // namespace draco