draco/compression/attributes/sequential_quantization_attribute_decoder.cc
Frank Galligan 3682ca2801 Make decoder more robust, build and Javascript fixes
1. Add 'use strict'to example Javascript.
2. Small fixes to README.md.
3. Fix Draco compiler flag tests.
4. Fixed issue when number of quantized bits was to large.
5. Changed StartDecoding to return a value.
6. Check that num of attributes are not less than 0.
7. Check that the number of attributes is a valid value.
2017-01-23 14:55:45 -08:00

89 lines
3.3 KiB
C++

// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "compression/attributes/sequential_quantization_attribute_decoder.h"
#include "core/quantization_utils.h"
namespace draco {
SequentialQuantizationAttributeDecoder::SequentialQuantizationAttributeDecoder()
: quantization_bits_(-1), max_value_dif_(0.f) {}
bool SequentialQuantizationAttributeDecoder::Initialize(
PointCloudDecoder *decoder, int attribute_id) {
if (!SequentialIntegerAttributeDecoder::Initialize(decoder, attribute_id))
return false;
const PointAttribute *const attribute =
decoder->point_cloud()->attribute(attribute_id);
// Currently we can quantize only floating point arguments.
if (attribute->data_type() != DT_FLOAT32)
return false;
return true;
}
bool SequentialQuantizationAttributeDecoder::DecodeIntegerValues(
const std::vector<PointIndex> &point_ids, DecoderBuffer *in_buffer) {
if (!DecodeQuantizedDataInfo())
return false;
return SequentialIntegerAttributeDecoder::DecodeIntegerValues(point_ids,
in_buffer);
}
bool SequentialQuantizationAttributeDecoder::StoreValues(uint32_t num_values) {
return DequantizeValues(num_values);
}
bool SequentialQuantizationAttributeDecoder::DecodeQuantizedDataInfo() {
const int num_components = attribute()->components_count();
min_value_ = std::unique_ptr<float[]>(new float[num_components]);
if (!decoder()->buffer()->Decode(min_value_.get(),
sizeof(float) * num_components))
return false;
if (!decoder()->buffer()->Decode(&max_value_dif_))
return false;
uint8_t quantization_bits;
if (!decoder()->buffer()->Decode(&quantization_bits) ||
quantization_bits > 31)
return false;
quantization_bits_ = quantization_bits;
return true;
}
bool SequentialQuantizationAttributeDecoder::DequantizeValues(
uint32_t num_values) {
// Convert all quantized values back to floats.
const int32_t max_quantized_value = (1 << (quantization_bits_)) - 1;
const int num_components = attribute()->components_count();
const int entry_size = sizeof(float) * num_components;
const std::unique_ptr<float[]> att_val(new float[num_components]);
int quant_val_id = 0;
int out_byte_pos = 0;
Dequantizer dequantizer;
dequantizer.Init(max_value_dif_, max_quantized_value);
for (uint32_t i = 0; i < num_values; ++i) {
for (int c = 0; c < num_components; ++c) {
float value = dequantizer.DequantizeFloat(values()->at(quant_val_id++));
value = value + min_value_[c];
att_val[c] = value;
}
// Store the floating point value into the attribute buffer.
attribute()->buffer()->Write(out_byte_pos, att_val.get(), entry_size);
out_byte_pos += entry_size;
}
return true;
}
} // namespace draco