draco/mesh/mesh_are_equivalent.cc
Ondrej Stava ef36ca97ed Fixing build of mesh_are_equivalent
Adding missing test files needed by the mesh_are_equivalent_test
2017-02-14 15:41:17 -08:00

189 lines
7.2 KiB
C++

// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "mesh/mesh_are_equivalent.h"
#include <algorithm>
namespace draco {
void MeshAreEquivalent::PrintPostion(const Mesh &mesh, FaceIndex f, int32_t c) {
fprintf(stderr, "Printing position for (%i,%i)\n", f.value(), c);
const auto pos_att = mesh.GetNamedAttribute(GeometryAttribute::POSITION);
const PointIndex ver_index = mesh.face(f)[c];
const AttributeValueIndex pos_index = pos_att->mapped_index(ver_index);
const auto pos = pos_att->GetValue<float, 3>(pos_index);
fprintf(stderr, "Position (%f,%f,%f)\n", pos[0], pos[1], pos[2]);
}
Vector3f MeshAreEquivalent::GetPostion(const Mesh &mesh, FaceIndex f,
int32_t c) {
const auto pos_att = mesh.GetNamedAttribute(GeometryAttribute::POSITION);
const PointIndex ver_index = mesh.face(f)[c];
const AttributeValueIndex pos_index = pos_att->mapped_index(ver_index);
const auto pos = pos_att->GetValue<float, 3>(pos_index);
return Vector3f(pos[0], pos[1], pos[2]);
}
void MeshAreEquivalent::InitCornerIndexOfSmallestPointXYZ() {
DCHECK_EQ(mesh_infos_[0].corner_index_of_smallest_vertex.size(), 0);
DCHECK_EQ(mesh_infos_[1].corner_index_of_smallest_vertex.size(), 0);
for (int i = 0; i < 2; ++i) {
mesh_infos_[i].corner_index_of_smallest_vertex.reserve(num_faces_);
for (FaceIndex f(0); f < num_faces_; ++f) {
mesh_infos_[i].corner_index_of_smallest_vertex.push_back(
ComputeCornerIndexOfSmallestPointXYZ(mesh_infos_[i].mesh, f));
}
}
DCHECK_EQ(mesh_infos_[0].corner_index_of_smallest_vertex.size(), num_faces_);
DCHECK_EQ(mesh_infos_[1].corner_index_of_smallest_vertex.size(), num_faces_);
}
void MeshAreEquivalent::InitOrderedFaceIndex() {
DCHECK_EQ(mesh_infos_[0].ordered_index_of_face.size(), 0);
DCHECK_EQ(mesh_infos_[1].ordered_index_of_face.size(), 0);
for (int32_t i = 0; i < 2; ++i) {
mesh_infos_[i].ordered_index_of_face.reserve(num_faces_);
for (FaceIndex j(0); j < num_faces_; ++j) {
mesh_infos_[i].ordered_index_of_face.push_back(j);
}
const FaceIndexLess less(mesh_infos_[i]);
std::sort(mesh_infos_[i].ordered_index_of_face.begin(),
mesh_infos_[i].ordered_index_of_face.end(), less);
DCHECK_EQ(mesh_infos_[i].ordered_index_of_face.size(), num_faces_);
DCHECK(std::is_sorted(mesh_infos_[i].ordered_index_of_face.begin(),
mesh_infos_[i].ordered_index_of_face.end(), less));
}
}
int32_t MeshAreEquivalent::ComputeCornerIndexOfSmallestPointXYZ(
const Mesh &mesh, FaceIndex f) {
Vector3f pos[3]; // For the three corners.
for (int32_t i = 0; i < 3; ++i) {
pos[i] = GetPostion(mesh, f, i);
}
const auto min_it = std::min_element(pos, pos + 3);
return min_it - pos;
}
void MeshAreEquivalent::Init(const Mesh &mesh0, const Mesh &mesh1) {
mesh_infos_.clear();
DCHECK_EQ(mesh_infos_.size(), 0);
num_faces_ = mesh1.num_faces();
mesh_infos_.push_back(MeshInfo(mesh0));
mesh_infos_.push_back(MeshInfo(mesh1));
DCHECK_EQ(mesh_infos_.size(), 2);
DCHECK_EQ(mesh_infos_[0].corner_index_of_smallest_vertex.size(), 0);
DCHECK_EQ(mesh_infos_[1].corner_index_of_smallest_vertex.size(), 0);
DCHECK_EQ(mesh_infos_[0].ordered_index_of_face.size(), 0);
DCHECK_EQ(mesh_infos_[1].ordered_index_of_face.size(), 0);
InitCornerIndexOfSmallestPointXYZ();
InitOrderedFaceIndex();
}
bool MeshAreEquivalent::operator()(const Mesh &mesh0, const Mesh &mesh1) {
if (mesh0.num_faces() != mesh1.num_faces())
return false;
if (mesh0.num_attributes() != mesh1.num_attributes())
return false;
// The following function inits mesh info, i.e., computes the order of
// faces with respect to the lex order. This way one can then compare the
// the two meshes face by face. It also determines the first corner of each
// face with respect to lex order.
Init(mesh0, mesh1);
// Check for every attribute that is valid that every corner is identical.
typedef GeometryAttribute::Type AttributeType;
const int att_max = AttributeType::NAMED_ATTRIBUTES_COUNT;
for (int att_id = 0; att_id < att_max; ++att_id) {
// First check for existence of the attribute in both meshes.
const PointAttribute *const att0 =
mesh0.GetNamedAttribute(AttributeType(att_id));
const PointAttribute *const att1 =
mesh1.GetNamedAttribute(AttributeType(att_id));
if (att0 == nullptr && att1 == nullptr)
continue;
if (att0 == nullptr)
return false;
if (att1 == nullptr)
return false;
if (att0->data_type() != att1->data_type())
return false;
if (att0->components_count() != att1->components_count())
return false;
if (att0->normalized() != att1->normalized())
return false;
if (att0->byte_stride() != att1->byte_stride())
return false;
DCHECK(att0->IsValid());
DCHECK(att1->IsValid());
// Prepare blocks of memomry to hold data of corners for this attribute.
std::unique_ptr<uint8_t[]> data0(new uint8_t[att0->byte_stride()]);
std::unique_ptr<uint8_t[]> data1(new uint8_t[att0->byte_stride()]);
// Check every corner of every face.
for (int i = 0; i < num_faces_; ++i) {
const FaceIndex f0 = mesh_infos_[0].ordered_index_of_face[i];
const FaceIndex f1 = mesh_infos_[1].ordered_index_of_face[i];
const int c0_off = mesh_infos_[0].corner_index_of_smallest_vertex[f0];
const int c1_off = mesh_infos_[1].corner_index_of_smallest_vertex[f1];
for (int c = 0; c < 3; ++c) {
// Get the index of each corner.
const PointIndex corner0 = mesh0.face(f0)[(c0_off + c) % 3];
const PointIndex corner1 = mesh1.face(f1)[(c1_off + c) % 3];
// Map it to the right index for that attribute.
const AttributeValueIndex index0 = att0->mapped_index(corner0);
const AttributeValueIndex index1 = att1->mapped_index(corner1);
// Obtaining the data.
att0->GetValue(index0, data0.get());
att1->GetValue(index1, data1.get());
// Compare the data as is in memory.
if (memcmp(data0.get(), data1.get(), att0->byte_stride()) != 0)
return false;
}
}
}
return true;
}
bool MeshAreEquivalent::FaceIndexLess::operator()(FaceIndex f0,
FaceIndex f1) const {
if (f0 == f1)
return false;
const int c0 = mesh_info.corner_index_of_smallest_vertex[f0];
const int c1 = mesh_info.corner_index_of_smallest_vertex[f1];
for (int i = 0; i < 3; ++i) {
const Vector3f vf0 = GetPostion(mesh_info.mesh, f0, (c0 + i) % 3);
const Vector3f vf1 = GetPostion(mesh_info.mesh, f1, (c1 + i) % 3);
if (vf0 < vf1)
return true;
if (vf1 < vf0)
return false;
}
// In case the two faces are equivalent.
return false;
}
} // namespace draco