mirror of
https://git.mirrors.martin98.com/https://github.com/google/draco
synced 2025-07-29 03:51:58 +08:00
100 lines
4.0 KiB
C++
100 lines
4.0 KiB
C++
// Copyright 2016 The Draco Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
#ifndef DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_PREDICTION_SCHEME_TRANSFORM_H_
|
|
#define DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_PREDICTION_SCHEME_TRANSFORM_H_
|
|
|
|
#include "compression/config/compression_shared.h"
|
|
#include "core/decoder_buffer.h"
|
|
#include "core/encoder_buffer.h"
|
|
|
|
namespace draco {
|
|
|
|
// PredictionSchemeTransform is used to transform predicted values into
|
|
// correction values and vice versa.
|
|
// DataTypeT is the data type of predicted values.
|
|
// CorrTypeT is the data type used for storing corrected values. It allows
|
|
// transforms to store corrections into a different type or format compared to
|
|
// the predicted data.
|
|
template <typename DataTypeT, typename CorrTypeT>
|
|
class PredictionSchemeTransform {
|
|
public:
|
|
typedef CorrTypeT CorrType;
|
|
PredictionSchemeTransform() : num_components_(0) {}
|
|
|
|
PredictionSchemeTransformType GetType() const {
|
|
return PREDICTION_TRANSFORM_DELTA;
|
|
}
|
|
|
|
// Performs any custom initialization of the transform for the encoder.
|
|
// |size| = total number of values in |orig_data| (i.e., number of entries *
|
|
// number of components).
|
|
void InitializeEncoding(const DataTypeT * /* orig_data */, int /* size */,
|
|
int num_components) {
|
|
num_components_ = num_components;
|
|
}
|
|
void InitializeDecoding(int num_components) {
|
|
num_components_ = num_components;
|
|
}
|
|
|
|
// Computes the corrections based on the input original values and the
|
|
// predicted values. The correction is always computed for all components
|
|
// of the input element. |val_id| is the id of the input value
|
|
// (i.e., element_id * num_components). The default implementation is equal to
|
|
// std::minus.
|
|
inline void ComputeCorrection(const DataTypeT *original_vals,
|
|
const DataTypeT *predicted_vals,
|
|
CorrTypeT *out_corr_vals, int val_id) {
|
|
static_assert(std::is_same<DataTypeT, CorrTypeT>::value,
|
|
"For the default prediction transform, correction and input "
|
|
"data must be of the same type.");
|
|
for (int i = 0; i < num_components_; ++i) {
|
|
out_corr_vals[val_id + i] = original_vals[i] - predicted_vals[i];
|
|
}
|
|
}
|
|
|
|
// Computes the original value from the input predicted value and the decoded
|
|
// corrections. The default implementation is equal to std:plus.
|
|
inline void ComputeOriginalValue(const DataTypeT *predicted_vals,
|
|
const CorrTypeT *corr_vals,
|
|
DataTypeT *out_original_vals,
|
|
int val_id) const {
|
|
static_assert(std::is_same<DataTypeT, CorrTypeT>::value,
|
|
"For the default prediction transform, correction and input "
|
|
"data must be of the same type.");
|
|
for (int i = 0; i < num_components_; ++i) {
|
|
out_original_vals[i] = predicted_vals[i] + corr_vals[val_id + i];
|
|
}
|
|
}
|
|
|
|
// Encode any transform specific data.
|
|
bool EncodeTransformData(EncoderBuffer * /* buffer */) { return true; }
|
|
|
|
// Decodes any transform specific data. Called before Initialize() method.
|
|
bool DecodeTransformData(DecoderBuffer * /* buffer */) { return true; }
|
|
|
|
// Should return true if all corrected values are guaranteed to be positive.
|
|
bool AreCorrectionsPositive() const { return false; }
|
|
|
|
protected:
|
|
int num_components() const { return num_components_; }
|
|
|
|
private:
|
|
int num_components_;
|
|
};
|
|
|
|
} // namespace draco
|
|
|
|
#endif // DRACO_COMPRESSION_ATTRIBUTES_PREDICTION_SCHEMES_PREDICTION_SCHEME_TRANSFORM_H_
|