draco/mesh/corner_table.h
Ondrej Stava 73bb3c8530 Version 0.10.0 snapshot
- Improved compression for triangular meshes (~10%)
- Added WebAssembly decoder
- Code cleanup + robustness fixes
2017-04-12 12:09:14 -07:00

469 lines
16 KiB
C++

// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef DRACO_MESH_CORNER_TABLE_H_
#define DRACO_MESH_CORNER_TABLE_H_
#include <memory>
#include "core/draco_index_type_vector.h"
#include "mesh/corner_table_indices.h"
namespace draco {
// CornerTable is used to represent connectivity of triangular meshes.
// For every corner of all faces, the corner table stores the index of the
// opposite corner in the neighboring face (if it exists) as illustrated in the
// figure below (see corner |c| and it's opposite corner |o|).
//
// *
// /c\
// / \
// /n p\
// *-------*
// \ /
// \ /
// \o/
// *
//
// All corners are defined by unique CornerIndex and each triplet of corners
// that define a single face id always ordered consecutively as:
// { 3 * FaceIndex, 3 * FaceIndex + 1, 3 * FaceIndex +2 }.
// This representation of corners allows CornerTable to easily retrieve Next and
// Previous corners on any face (see corners |n| and |p| in the figure above).
// Using the Next, Previous, and Opposite corners then enables traversal of any
// 2-manifold surface.
// If the CornerTable is constructed from a non-manifold surface, the input
// non-manifold edges and vertices are automatically split.
class CornerTable {
public:
CornerTable();
static std::unique_ptr<CornerTable> Create(
const IndexTypeVector<FaceIndex, FaceType> &faces);
// Initializes the CornerTable from provides set of indexed faces.
// The input faces can represent a non-manifold topolgy, in which case the
// non-manifold edges and vertices are going to be split.
bool Initialize(const IndexTypeVector<FaceIndex, FaceType> &faces);
// Resets the corner table to the given number of invalid faces.
bool Reset(int num_faces);
inline int num_vertices() const { return vertex_corners_.size(); }
inline int num_corners() const { return faces_.size() * 3; }
inline int num_faces() const { return faces_.size(); }
inline CornerIndex Opposite(CornerIndex corner) const {
if (corner < 0)
return corner;
return opposite_corners_[corner];
}
inline CornerIndex Next(CornerIndex corner) const {
if (corner < 0)
return corner;
return LocalIndex(++corner) ? corner : corner - 3;
}
inline CornerIndex Previous(CornerIndex corner) const {
if (corner < 0)
return corner;
return LocalIndex(corner) ? corner - 1 : corner + 2;
}
inline VertexIndex Vertex(CornerIndex corner) const {
if (corner < 0)
return kInvalidVertexIndex;
return faces_[Face(corner)][LocalIndex(corner)];
}
inline FaceIndex Face(CornerIndex corner) const {
if (corner < 0)
return kInvalidFaceIndex;
return FaceIndex(corner.value() / 3);
}
inline CornerIndex FirstCorner(FaceIndex face) const {
if (face < 0)
return kInvalidCornerIndex;
return CornerIndex(face.value() * 3);
}
inline std::array<CornerIndex, 3> AllCorners(FaceIndex face) const {
const CornerIndex ci = CornerIndex(face.value() * 3);
return {{ci, ci + 1, ci + 2}};
}
inline int LocalIndex(CornerIndex corner) const { return corner.value() % 3; }
inline FaceType FaceData(FaceIndex face) const { return faces_[face]; }
void SetFaceData(FaceIndex face, FaceType data) { faces_[face] = data; }
// Returns the left-most corner of a single vertex 1-ring. If a vertex is not
// on a boundary (in which case it has a full 1-ring), this function returns
// any of the corners mapped to the given vertex.
inline CornerIndex LeftMostCorner(VertexIndex v) const {
return vertex_corners_[v];
}
// Returns the parent vertex index of a given corner table vertex.
VertexIndex VertexParent(VertexIndex vertex) const {
if (vertex.value() < num_original_vertices_)
return vertex;
return non_manifold_vertex_parents_[vertex - num_original_vertices_];
}
// Returns true if the corner is valid.
inline bool IsValid(CornerIndex c) const {
return Vertex(c) != kInvalidVertexIndex;
}
// Returns the valence (or degree) of a vertex.
// Returns -1 if the given vertex index is not valid.
int Valence(VertexIndex v) const;
// Returns the valence of the vertex at the given corner.
inline int Valence(CornerIndex c) const {
if (c == kInvalidCornerIndex)
return -1;
return Valence(Vertex(c));
}
// Returns true if the specified vertex is on a boundary.
inline bool IsOnBoundary(VertexIndex vert) const {
const CornerIndex corner = LeftMostCorner(vert);
if (SwingLeft(corner) < 0)
return true;
return false;
}
// *-------*
// / \ / \
// / \ / \
// / sl\c/sr \
// *-------v-------*
// Returns the corner on the adjacent face on the right that maps to
// the same vertex as the given corner (sr in the above diagram).
inline CornerIndex SwingRight(CornerIndex corner) const {
return Previous(Opposite(Previous(corner)));
}
// Returns the corner on the left face that maps to the same vertex as the
// given corner (sl in the above diagram).
inline CornerIndex SwingLeft(CornerIndex corner) const {
return Next(Opposite(Next(corner)));
}
// Get opposite corners on the left and right faces respecitively (see image
// below, where L and R are the left and right corners of a corner X.
//
// *-------*-------*
// \L /X\ R/
// \ / \ /
// \ / \ /
// *-------*
CornerIndex GetLeftCorner(CornerIndex corner_id) const {
if (corner_id < 0)
return kInvalidCornerIndex;
return Opposite(Previous(corner_id));
}
CornerIndex GetRightCorner(CornerIndex corner_id) const {
if (corner_id < 0)
return kInvalidCornerIndex;
return Opposite(Next(corner_id));
}
// Returns the number of new vertices that were created as a result of
// spliting of non-manifold vertices of the input geometry.
int NumNewVertices() const { return num_vertices() - num_original_vertices_; }
int NumOriginalVertices() const { return num_original_vertices_; }
// Returns the number of faces with duplicated vertex indices.
int NumDegeneratedFaces() const { return num_degenerated_faces_; }
// Returns the number of isolated vertices (vertices that have
// vertex_corners_ mapping set to kInvalidCornerIndex.
int NumIsolatedVertices() const { return num_isolated_vertices_; }
bool IsDegenerated(FaceIndex face) const;
// Methods that modify an existing corner table.
// Sets the opposite corner mapping between two corners. Caller must ensure
// that the indices are valid.
inline void SetOppositeCorner(CornerIndex corner_id,
CornerIndex opp_corner_id) {
opposite_corners_[corner_id] = opp_corner_id;
}
// Sets opposite corners for both input corners.
inline void SetOppositeCorners(CornerIndex corner_0, CornerIndex corner_1) {
if (corner_0 != kInvalidCornerIndex)
SetOppositeCorner(corner_0, corner_1);
if (corner_1 != kInvalidCornerIndex)
SetOppositeCorner(corner_1, corner_0);
}
// Updates mapping betweeh a corner and a vertex.
inline void MapCornerToVertex(CornerIndex corner_id, VertexIndex vert_id) {
const FaceIndex face = Face(corner_id);
faces_[face][LocalIndex(corner_id)] = vert_id;
if (vert_id >= 0) {
if (vertex_corners_.size() <= static_cast<size_t>(vert_id.value()))
vertex_corners_.resize(vert_id.value() + 1);
vertex_corners_[vert_id] = corner_id;
}
}
VertexIndex AddNewVertex() {
// Add a new invalid vertex.
vertex_corners_.push_back(kInvalidCornerIndex);
return VertexIndex(vertex_corners_.size() - 1);
}
// Sets a new left most corner for a given vertex.
void SetLeftMostCorner(VertexIndex vert, CornerIndex corner) {
if (vert != kInvalidVertexIndex)
vertex_corners_[vert] = corner;
}
// Updates the vertex to corner map on a specified vertex. This should be
// called in cases where the mapping may be invalid (e.g. when the corner
// table was constructed manually).
void UpdateVertexToCornerMap(VertexIndex vert) {
const CornerIndex first_c = vertex_corners_[vert];
if (first_c < 0)
return; // Isolated vertex.
CornerIndex act_c = SwingLeft(first_c);
CornerIndex c = first_c;
while (act_c >= 0 && act_c != first_c) {
c = act_c;
act_c = SwingLeft(act_c);
}
if (act_c != first_c) {
vertex_corners_[vert] = c;
}
}
// Sets the new number of vertices. It's a responsibility of the caller to
// ensure that no corner is mapped beyond the range of the new number of
// vertices.
inline void SetNumVertices(int num_vertices) {
vertex_corners_.resize(num_vertices, kInvalidCornerIndex);
}
// Makes a vertex isolated (not attached to any corner).
void MakeVertexIsolated(VertexIndex vert) {
vertex_corners_[vert] = kInvalidCornerIndex;
}
// Returns true if a vertex is not attached to any face.
inline bool IsVertexIsolated(VertexIndex v) const {
return LeftMostCorner(v) < 0;
}
// Makes a given face invalid (all corners are marked as invalid).
void MakeFaceInvalid(FaceIndex face) {
if (face != kInvalidFaceIndex) {
for (int i = 0; i < 3; ++i) {
faces_[face][i] = kInvalidVertexIndex;
}
}
}
// Updates mapping between faces and a vertex using the corners mapped to
// the provided vertex.
void UpdateFaceToVertexMap(const VertexIndex vertex);
private:
// Computes opposite corners mapping from the data stored in |faces_|. Any
// non-manifold edge will be split so the result is always a 2-manifold
// surface.
bool ComputeOppositeCorners(int *num_vertices);
// Computes the lookup map for going from a vertex to a corner. This method
// can handle non-manifold vertices by spliting them into multiple manifold
// vertices.
bool ComputeVertexCorners(int num_vertices);
IndexTypeVector<FaceIndex, FaceType> faces_;
IndexTypeVector<CornerIndex, CornerIndex> opposite_corners_;
IndexTypeVector<VertexIndex, CornerIndex> vertex_corners_;
int num_original_vertices_;
int num_degenerated_faces_;
int num_isolated_vertices_;
IndexTypeVector<VertexIndex, VertexIndex> non_manifold_vertex_parents_;
};
// TODO(ostava): All these iterators will be moved into a new file in a separate
// CL.
// Class for iterating over vertices in a 1-ring around the specified vertex.
class VertexRingIterator
: public std::iterator<std::forward_iterator_tag, VertexIndex> {
public:
// std::iterator interface requires a default constructor.
VertexRingIterator()
: corner_table_(nullptr),
start_corner_(kInvalidCornerIndex),
corner_(start_corner_),
left_traversal_(true) {}
// Create the iterator from the provided corner table and the central vertex.
VertexRingIterator(const CornerTable *table, VertexIndex vert_id)
: corner_table_(table),
start_corner_(table->LeftMostCorner(vert_id)),
corner_(start_corner_),
left_traversal_(true) {}
// Gets the last visited ring vertex.
VertexIndex Vertex() const {
CornerIndex ring_corner = left_traversal_ ? corner_table_->Previous(corner_)
: corner_table_->Next(corner_);
return corner_table_->Vertex(ring_corner);
}
// Returns true when all ring vertices have been visited.
bool End() const { return corner_ < 0; }
// Proceeds to the next ring vertex if possible.
void Next() {
if (left_traversal_) {
corner_ = corner_table_->SwingLeft(corner_);
if (corner_ < 0) {
// Open boundary reached.
corner_ = start_corner_;
left_traversal_ = false;
} else if (corner_ == start_corner_) {
// End reached.
corner_ = kInvalidCornerIndex;
}
} else {
// Go to the right until we reach a boundary there (no explicit check
// is needed in this case).
corner_ = corner_table_->SwingRight(corner_);
}
}
// std::iterator interface.
value_type operator*() const { return Vertex(); }
VertexRingIterator &operator++() {
Next();
return *this;
}
VertexRingIterator operator++(int) {
const VertexRingIterator result = *this;
++(*this);
return result;
}
bool operator!=(const VertexRingIterator &other) const {
return corner_ != other.corner_ || start_corner_ != other.start_corner_;
}
bool operator==(const VertexRingIterator &other) const {
return !this->operator!=(other);
}
// Helper function for getting a valid end iterator.
static VertexRingIterator EndIterator(VertexRingIterator other) {
VertexRingIterator ret = other;
ret.corner_ = kInvalidCornerIndex;
return ret;
}
private:
const CornerTable *corner_table_;
// The first processed corner.
CornerIndex start_corner_;
// The last processed corner.
CornerIndex corner_;
// Traversal direction.
bool left_traversal_;
};
// Class for iterating over faces adjacent to the specified input face.
class FaceAdjacencyIterator
: public std::iterator<std::forward_iterator_tag, FaceIndex> {
public:
// std::iterator interface requires a default constructor.
FaceAdjacencyIterator()
: corner_table_(nullptr),
start_corner_(kInvalidCornerIndex),
corner_(start_corner_) {}
// Create the iterator from the provided corner table and the central vertex.
FaceAdjacencyIterator(const CornerTable *table, FaceIndex face_id)
: corner_table_(table),
start_corner_(table->FirstCorner(face_id)),
corner_(start_corner_) {
// We need to start with a corner that has a valid opposite face (if
// there is any such corner).
if (corner_table_->Opposite(corner_) < 0)
FindNextFaceNeighbor();
}
// Gets the last visited adjacent face.
FaceIndex Face() const {
return corner_table_->Face(corner_table_->Opposite(corner_));
}
// Returns true when all adjacent faces have been visited.
bool End() const { return corner_ < 0; }
// Proceeds to the next adjacen face if possible.
void Next() { FindNextFaceNeighbor(); }
// std::iterator interface.
value_type operator*() const { return Face(); }
FaceAdjacencyIterator &operator++() {
Next();
return *this;
}
FaceAdjacencyIterator operator++(int) {
const FaceAdjacencyIterator result = *this;
++(*this);
return result;
}
bool operator!=(const FaceAdjacencyIterator &other) const {
return corner_ != other.corner_ || start_corner_ != other.start_corner_;
}
bool operator==(const FaceAdjacencyIterator &other) const {
return !this->operator!=(other);
}
// Helper function for getting a valid end iterator.
static FaceAdjacencyIterator EndIterator(FaceAdjacencyIterator other) {
FaceAdjacencyIterator ret = other;
ret.corner_ = kInvalidCornerIndex;
return ret;
}
private:
// Finds the next corner with a valid opposite face.
void FindNextFaceNeighbor() {
while (corner_ >= 0) {
corner_ = corner_table_->Next(corner_);
if (corner_ == start_corner_) {
corner_ = kInvalidCornerIndex;
return;
}
if (corner_table_->Opposite(corner_) >= 0) {
// Valid opposite face.
return;
}
}
}
const CornerTable *corner_table_;
// The first processed corner.
CornerIndex start_corner_;
// The last processed corner.
CornerIndex corner_;
};
} // namespace draco
#endif // DRACO_MESH_CORNER_TABLE_H_