draco/point_cloud/point_attribute.cc
Ondrej Stava 8374e14042 Merging changes from our private repo:
1. More optimized selection of prediction schemes for different
compression levels on the encoder side.

2. Improved robustness to tampered input data (.drc)

3. Added support for strognly typed vectors of bools

4. Support for logging and squared lenght to our VectorND class

5. Added support for partially defined indices in .OBJ files

6. Added support for loading of normal vectors in .PLY files
2017-02-08 10:34:40 -08:00

185 lines
7.1 KiB
C++

// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "point_cloud/point_attribute.h"
#include <unordered_map>
using std::unordered_map;
// Shortcut for typed conditionals.
template <bool B, class T, class F>
using conditional_t = typename std::conditional<B, T, F>::type;
namespace draco {
PointAttribute::PointAttribute()
: num_unique_entries_(0), identity_mapping_(false) {}
PointAttribute::PointAttribute(const GeometryAttribute &att)
: GeometryAttribute(att),
num_unique_entries_(0),
identity_mapping_(false) {}
bool PointAttribute::Reset(size_t num_attribute_values) {
if (attribute_buffer_ == nullptr) {
attribute_buffer_ = std::unique_ptr<DataBuffer>(new DataBuffer());
}
const int64_t entry_size = DataTypeLength(data_type()) * components_count();
if (!attribute_buffer_->Update(nullptr, num_attribute_values * entry_size))
return false;
// Assign the new buffer to the parent attribute.
ResetBuffer(attribute_buffer_.get(), entry_size, 0);
num_unique_entries_ = num_attribute_values;
return true;
}
AttributeValueIndex::ValueType PointAttribute::DeduplicateValues(
const GeometryAttribute &in_att) {
return DeduplicateValues(in_att, AttributeValueIndex(0));
}
AttributeValueIndex::ValueType PointAttribute::DeduplicateValues(
const GeometryAttribute &in_att, AttributeValueIndex in_att_offset) {
AttributeValueIndex::ValueType unique_vals = 0;
switch (in_att.data_type()) {
// Currently we support only float, uint8, and uint16 arguments.
case DT_FLOAT32:
unique_vals = DeduplicateTypedValues<float>(in_att, in_att_offset);
break;
case DT_INT8:
unique_vals = DeduplicateTypedValues<int8_t>(in_att, in_att_offset);
break;
case DT_UINT8:
case DT_BOOL:
unique_vals = DeduplicateTypedValues<uint8_t>(in_att, in_att_offset);
break;
case DT_UINT16:
unique_vals = DeduplicateTypedValues<uint16_t>(in_att, in_att_offset);
break;
case DT_INT16:
unique_vals = DeduplicateTypedValues<int16_t>(in_att, in_att_offset);
break;
case DT_UINT32:
unique_vals = DeduplicateTypedValues<uint32_t>(in_att, in_att_offset);
break;
case DT_INT32:
unique_vals = DeduplicateTypedValues<int32_t>(in_att, in_att_offset);
break;
default:
return -1; // Unsupported data type.
}
if (unique_vals == 0)
return -1; // Unexcpected error.
return unique_vals;
}
// Helper function for calling UnifyDuplicateAttributes<T,components_count_t>
// with the correct template arguments.
// Returns the number of unique attribute values.
template <typename T>
AttributeValueIndex::ValueType PointAttribute::DeduplicateTypedValues(
const GeometryAttribute &in_att, AttributeValueIndex in_att_offset) {
// Select the correct method to call based on the number of attribute
// components.
switch (in_att.components_count()) {
case 1:
return DeduplicateFormattedValues<T, 1>(in_att, in_att_offset);
case 2:
return DeduplicateFormattedValues<T, 2>(in_att, in_att_offset);
case 3:
return DeduplicateFormattedValues<T, 3>(in_att, in_att_offset);
case 4:
return DeduplicateFormattedValues<T, 4>(in_att, in_att_offset);
default:
return 0;
}
}
template <typename T, int components_count_t>
AttributeValueIndex::ValueType PointAttribute::DeduplicateFormattedValues(
const GeometryAttribute &in_att, AttributeValueIndex in_att_offset) {
// We want to detect duplicates using a hash map but we cannot hash floating
// point numbers directly so bit-copy floats to the same sized integers and
// hash them.
// First we need to determine which int type to use (1, 2, 4 or 8 bytes).
// Note, this is done at compile time using std::conditional struct.
// Conditional is in form <bool-expression, true, false>. If bool-expression
// is true the "true" branch is used and vice versa. All at compile time.
typedef conditional_t<sizeof(T) == 1, uint8_t,
conditional_t<sizeof(T) == 2, uint16_t,
conditional_t<sizeof(T) == 4, uint32_t,
/*else*/ uint64_t>>>
HashType;
AttributeValueIndex unique_vals(0);
typedef std::array<T, components_count_t> AttributeValue;
typedef std::array<HashType, components_count_t> AttributeHashableValue;
// Hash map storing index of the first attribute with a given value.
unordered_map<AttributeHashableValue, AttributeValueIndex,
HashArray<AttributeHashableValue>>
value_to_index_map;
AttributeValue att_value;
AttributeHashableValue hashable_value;
IndexTypeVector<AttributeValueIndex, AttributeValueIndex> value_map(
num_unique_entries_);
for (AttributeValueIndex i(0); i < num_unique_entries_; ++i) {
const AttributeValueIndex att_pos = i + in_att_offset;
att_value = in_att.GetValue<T, components_count_t>(att_pos);
// Convert the value to hashable type. Bit-copy real attributes to integers.
memcpy(&(hashable_value[0]), &(att_value[0]), sizeof(att_value));
// Check if the given attribute value has been used before already.
auto it = value_to_index_map.find(hashable_value);
if (it != value_to_index_map.end()) {
// Duplicated value found. Update index mapping.
value_map[i] = it->second;
} else {
// New unique value.
// Update the hash map with a new entry pointing to the latest unique
// vertex index.
value_to_index_map.insert(
std::pair<AttributeHashableValue, AttributeValueIndex>(hashable_value,
unique_vals));
// Add the unique value to the mesh builder.
SetAttributeValue(unique_vals, &att_value);
// Update index mapping.
value_map[i] = unique_vals;
++unique_vals;
}
}
if (unique_vals == num_unique_entries_)
return unique_vals.value(); // Nothing has changed.
if (is_mapping_identity()) {
// Change identity mapping to the explicit one.
// The number of points is equal to the number of old unique values.
SetExplicitMapping(num_unique_entries_);
// Update the explicit map.
for (int i = 0; i < num_unique_entries_; ++i) {
SetPointMapEntry(PointIndex(i), value_map[AttributeValueIndex(i)]);
}
} else {
// Update point to value map using the mapping between old and new values.
for (PointIndex i(0); i < indices_map_.size(); ++i) {
SetPointMapEntry(i, value_map[indices_map_[i]]);
}
}
num_unique_entries_ = unique_vals.value();
return num_unique_entries_;
}
} // namespace draco