mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-19 08:09:36 +08:00
Adding PocketFFT support in FFT module since kissfft has some flaw in accuracy and performance
This commit is contained in:
parent
73d65dbc43
commit
00b75375e7
@ -87,7 +87,7 @@
|
||||
// protected by parenthesis against macro expansion, the min()/max() macros
|
||||
// are defined here and any not-parenthesized min/max call will cause a
|
||||
// compiler error.
|
||||
#if !defined(__HIPCC__) && !defined(EIGEN_USE_SYCL)
|
||||
#if !defined(__HIPCC__) && !defined(EIGEN_USE_SYCL) && !defined(EIGEN_POCKETFFT_DEFAULT)
|
||||
//
|
||||
// HIP header files include the following files
|
||||
// <thread>
|
||||
|
@ -29,10 +29,19 @@
|
||||
* The default implementation is based on kissfft. It is a small, free, and
|
||||
* reasonably efficient default.
|
||||
*
|
||||
* There are currently two implementation backend:
|
||||
* There are currently four implementation backend:
|
||||
*
|
||||
* - kissfft(https://github.com/mborgerding/kissfft) : Simple and not so fast, BSD-3-Clause.
|
||||
* It is a mixed-radix Fast Fourier Transform based up on the principle, "Keep It Simple, Stupid."
|
||||
* Notice that:kissfft fails to handle "atypically-sized" inputs(i.e., sizes with large factors),a workaround is using fftw or pocketfft.
|
||||
* - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size.
|
||||
* - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form.
|
||||
* - pocketfft (https://gitlab.mpcdf.mpg.de/mtr/pocketfft) : faster than kissfft, BSD 3-clause.
|
||||
* It is a heavily modified implementation of FFTPack, with the following advantages:
|
||||
* 1.strictly C++11 compliant
|
||||
* 2.more accurate twiddle factor computation
|
||||
* 3.very fast plan generation
|
||||
* 4.worst case complexity for transform sizes with large prime factors is N*log(N), because Bluestein's algorithm is used for these cases.
|
||||
*
|
||||
* \section FFTDesign Design
|
||||
*
|
||||
@ -85,9 +94,16 @@
|
||||
namespace Eigen {
|
||||
template <typename T> struct default_fft_impl : public internal::imklfft_impl {};
|
||||
}
|
||||
#else
|
||||
#elif defined EIGEN_POCKETFFT_DEFAULT
|
||||
// internal::pocketfft_impl: a heavily modified implementation of FFTPack, with many advantages.
|
||||
# include<pocketfft_hdronly.h>
|
||||
# include"src/FFT/ei_pocketfft_impl.h"
|
||||
namespace Eigen {
|
||||
template <typename T>
|
||||
struct default_fft_impl : public internal::pocketfft_impl<T> {};
|
||||
}
|
||||
#else
|
||||
// internal::kissfft_impl: small, free, reasonably efficient default, derived from kissfft
|
||||
//
|
||||
# include "src/FFT/ei_kissfft_impl.h"
|
||||
namespace Eigen {
|
||||
template <typename T>
|
||||
@ -195,13 +211,13 @@ class FFT
|
||||
m_impl.fwd(dst,src,static_cast<int>(nfft));
|
||||
}
|
||||
|
||||
/*
|
||||
#if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT
|
||||
inline
|
||||
void fwd2(Complex * dst, const Complex * src, int n0,int n1)
|
||||
{
|
||||
m_impl.fwd2(dst,src,n0,n1);
|
||||
}
|
||||
*/
|
||||
#endif
|
||||
|
||||
template <typename Input_>
|
||||
inline
|
||||
@ -354,8 +370,7 @@ class FFT
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
// TODO: multi-dimensional FFTs
|
||||
#if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT
|
||||
inline
|
||||
void inv2(Complex * dst, const Complex * src, int n0,int n1)
|
||||
{
|
||||
@ -363,7 +378,8 @@ class FFT
|
||||
if ( HasFlag( Unscaled ) == false)
|
||||
scale(dst,1./(n0*n1),n0*n1);
|
||||
}
|
||||
*/
|
||||
#endif
|
||||
|
||||
|
||||
inline
|
||||
impl_type & impl() {return m_impl;}
|
||||
|
69
unsupported/Eigen/src/FFT/ei_pocketfft_impl.h
Normal file
69
unsupported/Eigen/src/FFT/ei_pocketfft_impl.h
Normal file
@ -0,0 +1,69 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
using namespace pocketfft;
|
||||
using namespace pocketfft::detail;
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _Scalar>
|
||||
struct pocketfft_impl
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef std::complex<Scalar> Complex;
|
||||
|
||||
inline void clear() {}
|
||||
|
||||
inline void fwd(Complex* dst, const Scalar* src, int nfft){
|
||||
const shape_t shape_{ static_cast<size_t>(nfft) };
|
||||
const shape_t axes_{ 0 };
|
||||
const stride_t stride_in{ sizeof(Scalar) };
|
||||
const stride_t stride_out{ sizeof(Complex) };
|
||||
r2c(shape_, stride_in, stride_out, axes_, FORWARD, src, dst, static_cast<Scalar>(1));
|
||||
}
|
||||
|
||||
inline void fwd(Complex* dst, const Complex* src, int nfft){
|
||||
const shape_t shape_{ static_cast<size_t>(nfft) };
|
||||
const shape_t axes_{ 0 };
|
||||
const stride_t stride_{ sizeof(Complex) };
|
||||
c2c(shape_, stride_, stride_, axes_, FORWARD, src, dst, static_cast<Scalar>(1));
|
||||
}
|
||||
|
||||
inline void inv(Scalar* dst, const Complex* src, int nfft){
|
||||
const shape_t shape_{ static_cast<size_t>(nfft) };
|
||||
const shape_t axes_{ 0 };
|
||||
const stride_t stride_in{ sizeof(Complex) };
|
||||
const stride_t stride_out{ sizeof(Scalar) };
|
||||
c2r(shape_, stride_in, stride_out, axes_, BACKWARD, src, dst, static_cast<Scalar>(1));
|
||||
}
|
||||
|
||||
inline void inv(Complex* dst, const Complex* src, int nfft){
|
||||
const shape_t shape_{ static_cast<size_t>(nfft) };
|
||||
const shape_t axes_{ 0 };
|
||||
const stride_t stride_{ sizeof(Complex) };
|
||||
c2c(shape_, stride_, stride_, axes_, BACKWARD, src, dst, static_cast<Scalar>(1));
|
||||
}
|
||||
|
||||
inline void fwd2(Complex* dst, const Complex* src, int nfft0, int nfft1){
|
||||
const shape_t shape_{ static_cast<size_t>(nfft0), static_cast<size_t>(nfft1) };
|
||||
const shape_t axes_{ 0, 1 };
|
||||
const stride_t stride_{ static_cast<ptrdiff_t>(sizeof(Complex)*nfft1), static_cast<ptrdiff_t>(sizeof(Complex)) };
|
||||
c2c(shape_, stride_, stride_, axes_, FORWARD, src, dst, static_cast<Scalar>(1));
|
||||
}
|
||||
|
||||
inline void inv2(Complex* dst, const Complex* src, int nfft0, int nfft1){
|
||||
const shape_t shape_{ static_cast<size_t>(nfft0), static_cast<size_t>(nfft1) };
|
||||
const shape_t axes_{ 0, 1 };
|
||||
const stride_t stride_{ static_cast<ptrdiff_t>(sizeof(Complex)*nfft1), static_cast<ptrdiff_t>(sizeof(Complex)) };
|
||||
c2c(shape_, stride_, stride_, axes_, BACKWARD, src, dst, static_cast<Scalar>(1));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
} // namespace Eigen
|
@ -77,6 +77,17 @@ else()
|
||||
ei_add_property(EIGEN_MISSING_BACKENDS "fftw, ")
|
||||
endif()
|
||||
|
||||
find_path(POCKETFFT pocketfft_hdronly.h)
|
||||
if(POCKETFFT)
|
||||
if(EIGEN_TEST_CXX11)
|
||||
ei_add_property(EIGEN_TESTED_BACKENDS "pocketfft, ")
|
||||
include_directories( ${POCKETFFT} )
|
||||
ei_add_test(pocketfft "-pthread" "${CMAKE_THREAD_LIBS_INIT}" "-DEIGEN_POCKETFFT_DEFAULT" )
|
||||
endif()
|
||||
else()
|
||||
ei_add_property(EIGEN_MISSING_BACKENDS "pocketfft, ")
|
||||
endif()
|
||||
|
||||
option(EIGEN_TEST_OPENGL "Enable OpenGL support in unit tests" OFF)
|
||||
if(EIGEN_TEST_OPENGL)
|
||||
find_package(OpenGL)
|
||||
|
@ -1,2 +1,2 @@
|
||||
#define test_FFTW test_FFT
|
||||
#include "FFTW.cpp"
|
||||
#define EIGEN_FFT_DEFAULT 1
|
||||
#include "fft_test_shared.h"
|
||||
|
@ -1,262 +1,2 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
|
||||
template < typename T>
|
||||
complex<long double> promote(complex<T> x) { return complex<long double>((long double)x.real(),(long double)x.imag()); }
|
||||
|
||||
complex<long double> promote(float x) { return complex<long double>((long double)x); }
|
||||
complex<long double> promote(double x) { return complex<long double>((long double)x); }
|
||||
complex<long double> promote(long double x) { return complex<long double>((long double)x); }
|
||||
|
||||
|
||||
template <typename VT1,typename VT2>
|
||||
long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
long double pi = acos((long double)-1 );
|
||||
for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
|
||||
complex<long double> acc = 0;
|
||||
long double phinc = (long double)(-2.)*k0* pi / timebuf.size();
|
||||
for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
|
||||
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
|
||||
}
|
||||
totalpower += numext::abs2(acc);
|
||||
complex<long double> x = promote(fftbuf[k0]);
|
||||
complex<long double> dif = acc - x;
|
||||
difpower += numext::abs2(dif);
|
||||
//cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(numext::abs2(dif)) << endl;
|
||||
}
|
||||
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <typename VT1,typename VT2>
|
||||
long double dif_rmse( const VT1 buf1,const VT2 buf2)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
size_t n = (min)( buf1.size(),buf2.size() );
|
||||
for (size_t k=0;k<n;++k) {
|
||||
totalpower += (long double)((numext::abs2( buf1[k] ) + numext::abs2(buf2[k]) )/2);
|
||||
difpower += (long double)(numext::abs2(buf1[k] - buf2[k]));
|
||||
}
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
enum { StdVectorContainer, EigenVectorContainer };
|
||||
|
||||
template<int Container, typename Scalar> struct VectorType;
|
||||
|
||||
template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
|
||||
{
|
||||
typedef vector<Scalar> type;
|
||||
};
|
||||
|
||||
template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
|
||||
{
|
||||
typedef Matrix<Scalar,Dynamic,1> type;
|
||||
};
|
||||
|
||||
template <int Container, typename T>
|
||||
void test_scalar_generic(int nfft)
|
||||
{
|
||||
typedef typename FFT<T>::Complex Complex;
|
||||
typedef typename FFT<T>::Scalar Scalar;
|
||||
typedef typename VectorType<Container,Scalar>::type ScalarVector;
|
||||
typedef typename VectorType<Container,Complex>::type ComplexVector;
|
||||
|
||||
FFT<T> fft;
|
||||
ScalarVector tbuf(nfft);
|
||||
ComplexVector freqBuf;
|
||||
for (int k=0;k<nfft;++k)
|
||||
tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
|
||||
|
||||
// make sure it DOESN'T give the right full spectrum answer
|
||||
// if we've asked for half-spectrum
|
||||
fft.SetFlag(fft.HalfSpectrum );
|
||||
fft.fwd( freqBuf,tbuf);
|
||||
VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
|
||||
VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>() );// gross check
|
||||
|
||||
fft.ClearFlag(fft.HalfSpectrum );
|
||||
fft.fwd( freqBuf,tbuf);
|
||||
VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
|
||||
VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>() );// gross check
|
||||
|
||||
if (nfft&1)
|
||||
return; // odd FFTs get the wrong size inverse FFT
|
||||
|
||||
ScalarVector tbuf2;
|
||||
fft.inv( tbuf2 , freqBuf);
|
||||
VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>() );// gross check
|
||||
|
||||
|
||||
// verify that the Unscaled flag takes effect
|
||||
ScalarVector tbuf3;
|
||||
fft.SetFlag(fft.Unscaled);
|
||||
|
||||
fft.inv( tbuf3 , freqBuf);
|
||||
|
||||
for (int k=0;k<nfft;++k)
|
||||
tbuf3[k] *= T(1./nfft);
|
||||
|
||||
|
||||
//for (size_t i=0;i<(size_t) tbuf.size();++i)
|
||||
// cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl;
|
||||
|
||||
VERIFY( T(dif_rmse(tbuf,tbuf3)) < test_precision<T>() );// gross check
|
||||
|
||||
// verify that ClearFlag works
|
||||
fft.ClearFlag(fft.Unscaled);
|
||||
fft.inv( tbuf2 , freqBuf);
|
||||
VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void test_scalar(int nfft)
|
||||
{
|
||||
test_scalar_generic<StdVectorContainer,T>(nfft);
|
||||
//test_scalar_generic<EigenVectorContainer,T>(nfft);
|
||||
}
|
||||
|
||||
|
||||
template <int Container, typename T>
|
||||
void test_complex_generic(int nfft)
|
||||
{
|
||||
typedef typename FFT<T>::Complex Complex;
|
||||
typedef typename VectorType<Container,Complex>::type ComplexVector;
|
||||
|
||||
FFT<T> fft;
|
||||
|
||||
ComplexVector inbuf(nfft);
|
||||
ComplexVector outbuf;
|
||||
ComplexVector buf3;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
||||
fft.fwd( outbuf , inbuf);
|
||||
|
||||
VERIFY( T(fft_rmse(outbuf,inbuf)) < test_precision<T>() );// gross check
|
||||
fft.inv( buf3 , outbuf);
|
||||
|
||||
VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>() );// gross check
|
||||
|
||||
// verify that the Unscaled flag takes effect
|
||||
ComplexVector buf4;
|
||||
fft.SetFlag(fft.Unscaled);
|
||||
fft.inv( buf4 , outbuf);
|
||||
for (int k=0;k<nfft;++k)
|
||||
buf4[k] *= T(1./nfft);
|
||||
VERIFY( T(dif_rmse(inbuf,buf4)) < test_precision<T>() );// gross check
|
||||
|
||||
// verify that ClearFlag works
|
||||
fft.ClearFlag(fft.Unscaled);
|
||||
fft.inv( buf3 , outbuf);
|
||||
VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void test_complex(int nfft)
|
||||
{
|
||||
test_complex_generic<StdVectorContainer,T>(nfft);
|
||||
test_complex_generic<EigenVectorContainer,T>(nfft);
|
||||
}
|
||||
/*
|
||||
template <typename T,int nrows,int ncols>
|
||||
void test_complex2d()
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
FFT<T> fft;
|
||||
Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2;
|
||||
|
||||
src = Eigen::Matrix<Complex,nrows,ncols>::Random();
|
||||
//src = Eigen::Matrix<Complex,nrows,ncols>::Identity();
|
||||
|
||||
for (int k=0;k<ncols;k++) {
|
||||
Eigen::Matrix<Complex,nrows,1> tmpOut;
|
||||
fft.fwd( tmpOut,src.col(k) );
|
||||
dst2.col(k) = tmpOut;
|
||||
}
|
||||
|
||||
for (int k=0;k<nrows;k++) {
|
||||
Eigen::Matrix<Complex,1,ncols> tmpOut;
|
||||
fft.fwd( tmpOut, dst2.row(k) );
|
||||
dst2.row(k) = tmpOut;
|
||||
}
|
||||
|
||||
fft.fwd2(dst.data(),src.data(),ncols,nrows);
|
||||
fft.inv2(src2.data(),dst.data(),ncols,nrows);
|
||||
VERIFY( (src-src2).norm() < test_precision<T>() );
|
||||
VERIFY( (dst-dst2).norm() < test_precision<T>() );
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
void test_return_by_value(int len)
|
||||
{
|
||||
VectorXf in;
|
||||
VectorXf in1;
|
||||
in.setRandom( len );
|
||||
VectorXcf out1,out2;
|
||||
FFT<float> fft;
|
||||
|
||||
fft.SetFlag(fft.HalfSpectrum );
|
||||
|
||||
fft.fwd(out1,in);
|
||||
out2 = fft.fwd(in);
|
||||
VERIFY( (out1-out2).norm() < test_precision<float>() );
|
||||
in1 = fft.inv(out1);
|
||||
VERIFY( (in1-in).norm() < test_precision<float>() );
|
||||
}
|
||||
|
||||
EIGEN_DECLARE_TEST(FFTW)
|
||||
{
|
||||
CALL_SUBTEST( test_return_by_value(32) );
|
||||
//CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
|
||||
//CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
|
||||
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) );
|
||||
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) );
|
||||
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) );
|
||||
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) );
|
||||
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) );
|
||||
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) );
|
||||
CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) );
|
||||
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
|
||||
|
||||
#ifdef EIGEN_HAS_FFTWL
|
||||
CALL_SUBTEST( test_complex<long double>(32) );
|
||||
CALL_SUBTEST( test_complex<long double>(256) );
|
||||
CALL_SUBTEST( test_complex<long double>(3*8) );
|
||||
CALL_SUBTEST( test_complex<long double>(5*32) );
|
||||
CALL_SUBTEST( test_complex<long double>(2*3*4) );
|
||||
CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
||||
CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
||||
|
||||
CALL_SUBTEST( test_scalar<long double>(32) );
|
||||
CALL_SUBTEST( test_scalar<long double>(45) );
|
||||
CALL_SUBTEST( test_scalar<long double>(50) );
|
||||
CALL_SUBTEST( test_scalar<long double>(256) );
|
||||
CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
|
||||
#endif
|
||||
}
|
||||
#define EIGEN_FFTW_DEFAULT 1
|
||||
#include "fft_test_shared.h"
|
||||
|
279
unsupported/test/fft_test_shared.h
Normal file
279
unsupported/test/fft_test_shared.h
Normal file
@ -0,0 +1,279 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/FFT>
|
||||
|
||||
template <typename T>
|
||||
std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
|
||||
template < typename T>
|
||||
complex<long double> promote(complex<T> x) { return complex<long double>((long double)x.real(),(long double)x.imag()); }
|
||||
|
||||
complex<long double> promote(float x) { return complex<long double>((long double)x); }
|
||||
complex<long double> promote(double x) { return complex<long double>((long double)x); }
|
||||
complex<long double> promote(long double x) { return complex<long double>((long double)x); }
|
||||
|
||||
|
||||
template <typename VT1,typename VT2>
|
||||
long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
long double pi = acos((long double)-1 );
|
||||
for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
|
||||
complex<long double> acc = 0;
|
||||
long double phinc = (long double)(-2.)*k0* pi / timebuf.size();
|
||||
for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
|
||||
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
|
||||
}
|
||||
totalpower += numext::abs2(acc);
|
||||
complex<long double> x = promote(fftbuf[k0]);
|
||||
complex<long double> dif = acc - x;
|
||||
difpower += numext::abs2(dif);
|
||||
//cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(numext::abs2(dif)) << endl;
|
||||
}
|
||||
// cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
template <typename VT1,typename VT2>
|
||||
long double dif_rmse( const VT1 buf1,const VT2 buf2)
|
||||
{
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
size_t n = (min)( buf1.size(),buf2.size() );
|
||||
for (size_t k=0;k<n;++k) {
|
||||
totalpower += (long double)((numext::abs2( buf1[k] ) + numext::abs2(buf2[k]) )/2);
|
||||
difpower += (long double)(numext::abs2(buf1[k] - buf2[k]));
|
||||
}
|
||||
return sqrt(difpower/totalpower);
|
||||
}
|
||||
|
||||
enum { StdVectorContainer, EigenVectorContainer };
|
||||
|
||||
template<int Container, typename Scalar> struct VectorType;
|
||||
|
||||
template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
|
||||
{
|
||||
typedef vector<Scalar> type;
|
||||
};
|
||||
|
||||
template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
|
||||
{
|
||||
typedef Matrix<Scalar,Dynamic,1> type;
|
||||
};
|
||||
|
||||
template <int Container, typename T>
|
||||
void test_scalar_generic(int nfft)
|
||||
{
|
||||
typedef typename FFT<T>::Complex Complex;
|
||||
typedef typename FFT<T>::Scalar Scalar;
|
||||
typedef typename VectorType<Container,Scalar>::type ScalarVector;
|
||||
typedef typename VectorType<Container,Complex>::type ComplexVector;
|
||||
|
||||
FFT<T> fft;
|
||||
ScalarVector tbuf(nfft);
|
||||
ComplexVector freqBuf;
|
||||
for (int k=0;k<nfft;++k)
|
||||
tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
|
||||
|
||||
// make sure it DOESN'T give the right full spectrum answer
|
||||
// if we've asked for half-spectrum
|
||||
fft.SetFlag(fft.HalfSpectrum );
|
||||
fft.fwd( freqBuf,tbuf);
|
||||
VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
|
||||
VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>() );// gross check
|
||||
|
||||
fft.ClearFlag(fft.HalfSpectrum );
|
||||
fft.fwd( freqBuf,tbuf);
|
||||
VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
|
||||
VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>() );// gross check
|
||||
|
||||
if (nfft&1)
|
||||
return; // odd FFTs get the wrong size inverse FFT
|
||||
|
||||
ScalarVector tbuf2;
|
||||
fft.inv( tbuf2 , freqBuf);
|
||||
VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>() );// gross check
|
||||
|
||||
|
||||
// verify that the Unscaled flag takes effect
|
||||
ScalarVector tbuf3;
|
||||
fft.SetFlag(fft.Unscaled);
|
||||
|
||||
fft.inv( tbuf3 , freqBuf);
|
||||
|
||||
for (int k=0;k<nfft;++k)
|
||||
tbuf3[k] *= T(1./nfft);
|
||||
|
||||
|
||||
//for (size_t i=0;i<(size_t) tbuf.size();++i)
|
||||
// cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl;
|
||||
|
||||
VERIFY( T(dif_rmse(tbuf,tbuf3)) < test_precision<T>() );// gross check
|
||||
|
||||
// verify that ClearFlag works
|
||||
fft.ClearFlag(fft.Unscaled);
|
||||
fft.inv( tbuf2 , freqBuf);
|
||||
VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void test_scalar(int nfft)
|
||||
{
|
||||
test_scalar_generic<StdVectorContainer,T>(nfft);
|
||||
//test_scalar_generic<EigenVectorContainer,T>(nfft);
|
||||
}
|
||||
|
||||
|
||||
template <int Container, typename T>
|
||||
void test_complex_generic(int nfft)
|
||||
{
|
||||
typedef typename FFT<T>::Complex Complex;
|
||||
typedef typename VectorType<Container,Complex>::type ComplexVector;
|
||||
|
||||
FFT<T> fft;
|
||||
|
||||
ComplexVector inbuf(nfft);
|
||||
ComplexVector outbuf;
|
||||
ComplexVector buf3;
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
||||
fft.fwd( outbuf , inbuf);
|
||||
|
||||
VERIFY( T(fft_rmse(outbuf,inbuf)) < test_precision<T>() );// gross check
|
||||
fft.inv( buf3 , outbuf);
|
||||
|
||||
VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>() );// gross check
|
||||
|
||||
// verify that the Unscaled flag takes effect
|
||||
ComplexVector buf4;
|
||||
fft.SetFlag(fft.Unscaled);
|
||||
fft.inv( buf4 , outbuf);
|
||||
for (int k=0;k<nfft;++k)
|
||||
buf4[k] *= T(1./nfft);
|
||||
VERIFY( T(dif_rmse(inbuf,buf4)) < test_precision<T>() );// gross check
|
||||
|
||||
// verify that ClearFlag works
|
||||
fft.ClearFlag(fft.Unscaled);
|
||||
fft.inv( buf3 , outbuf);
|
||||
VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>() );// gross check
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void test_complex(int nfft)
|
||||
{
|
||||
test_complex_generic<StdVectorContainer,T>(nfft);
|
||||
test_complex_generic<EigenVectorContainer,T>(nfft);
|
||||
}
|
||||
|
||||
template <typename T,int nrows,int ncols>
|
||||
void test_complex2d()
|
||||
{
|
||||
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||
FFT<T> fft;
|
||||
Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2;
|
||||
|
||||
src = Eigen::Matrix<Complex,nrows,ncols>::Random();
|
||||
//src = Eigen::Matrix<Complex,nrows,ncols>::Identity();
|
||||
|
||||
for (int k=0;k<ncols;k++) {
|
||||
Eigen::Matrix<Complex,nrows,1> tmpOut;
|
||||
fft.fwd( tmpOut,src.col(k) );
|
||||
dst2.col(k) = tmpOut;
|
||||
}
|
||||
|
||||
for (int k=0;k<nrows;k++) {
|
||||
Eigen::Matrix<Complex,1,ncols> tmpOut;
|
||||
fft.fwd( tmpOut, dst2.row(k) );
|
||||
dst2.row(k) = tmpOut;
|
||||
}
|
||||
|
||||
fft.fwd2(dst.data(),src.data(),ncols,nrows);
|
||||
fft.inv2(src2.data(),dst.data(),ncols,nrows);
|
||||
VERIFY( (src-src2).norm() < test_precision<T>() );
|
||||
VERIFY( (dst-dst2).norm() < test_precision<T>() );
|
||||
}
|
||||
|
||||
void test_return_by_value(int len)
|
||||
{
|
||||
VectorXf in;
|
||||
VectorXf in1;
|
||||
in.setRandom( len );
|
||||
VectorXcf out1,out2;
|
||||
FFT<float> fft;
|
||||
|
||||
fft.SetFlag(fft.HalfSpectrum );
|
||||
|
||||
fft.fwd(out1,in);
|
||||
out2 = fft.fwd(in);
|
||||
VERIFY( (out1-out2).norm() < test_precision<float>() );
|
||||
in1 = fft.inv(out1);
|
||||
VERIFY( (in1-in).norm() < test_precision<float>() );
|
||||
}
|
||||
|
||||
EIGEN_DECLARE_TEST(FFTW)
|
||||
{
|
||||
CALL_SUBTEST( test_return_by_value(32) );
|
||||
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) );
|
||||
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) );
|
||||
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) );
|
||||
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) );
|
||||
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
|
||||
|
||||
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) );
|
||||
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) );
|
||||
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) );
|
||||
CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) );
|
||||
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
|
||||
|
||||
#if defined EIGEN_HAS_FFTWL || defined EIGEN_POCKETFFT_DEFAULT
|
||||
CALL_SUBTEST( test_complex<long double>(32) );
|
||||
CALL_SUBTEST( test_complex<long double>(256) );
|
||||
CALL_SUBTEST( test_complex<long double>(3*8) );
|
||||
CALL_SUBTEST( test_complex<long double>(5*32) );
|
||||
CALL_SUBTEST( test_complex<long double>(2*3*4) );
|
||||
CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
||||
CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
||||
|
||||
CALL_SUBTEST( test_scalar<long double>(32) );
|
||||
CALL_SUBTEST( test_scalar<long double>(45) );
|
||||
CALL_SUBTEST( test_scalar<long double>(50) );
|
||||
CALL_SUBTEST( test_scalar<long double>(256) );
|
||||
CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
|
||||
|
||||
CALL_SUBTEST( ( test_complex2d<long double, 2*3*4, 2*3*4> () ) );
|
||||
CALL_SUBTEST( ( test_complex2d<long double, 3*4*5, 3*4*5> () ) );
|
||||
CALL_SUBTEST( ( test_complex2d<long double, 24, 60> () ) );
|
||||
CALL_SUBTEST( ( test_complex2d<long double, 60, 24> () ) );
|
||||
// fail to build since Eigen limit the stack allocation size,too big here.
|
||||
// CALL_SUBTEST( ( test_complex2d<long double, 256, 256> () ) );
|
||||
|
||||
#endif
|
||||
|
||||
#if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT
|
||||
CALL_SUBTEST( ( test_complex2d<float, 24, 24> () ) );
|
||||
CALL_SUBTEST( ( test_complex2d<float, 60, 60> () ) );
|
||||
CALL_SUBTEST( ( test_complex2d<float, 24, 60> () ) );
|
||||
CALL_SUBTEST( ( test_complex2d<float, 60, 24> () ) );
|
||||
|
||||
CALL_SUBTEST( ( test_complex2d<double, 24, 24> () ) );
|
||||
CALL_SUBTEST( ( test_complex2d<double, 60, 60> () ) );
|
||||
CALL_SUBTEST( ( test_complex2d<double, 24, 60> () ) );
|
||||
CALL_SUBTEST( ( test_complex2d<double, 60, 24> () ) );
|
||||
#endif
|
||||
|
||||
}
|
2
unsupported/test/pocketfft.cpp
Normal file
2
unsupported/test/pocketfft.cpp
Normal file
@ -0,0 +1,2 @@
|
||||
#define EIGEN_POCKETFFT_DEFAULT 1
|
||||
#include "fft_test_shared.h"
|
Loading…
x
Reference in New Issue
Block a user