mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Fix warnings
This commit is contained in:
parent
d138fe341d
commit
01197e4452
@ -1140,7 +1140,6 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>,
|
|||||||
const Index max_coeff_count,
|
const Index max_coeff_count,
|
||||||
const DSizes<Index, NumInputDims>& input_slice_sizes,
|
const DSizes<Index, NumInputDims>& input_slice_sizes,
|
||||||
DSizes<Index, NumInputDims>* target_input_block_sizes) const {
|
DSizes<Index, NumInputDims>* target_input_block_sizes) const {
|
||||||
typedef typename internal::packet_traits<Scalar>::type Packet;
|
|
||||||
typedef internal::BlockReducer<Self, Op> BlockReducer;
|
typedef internal::BlockReducer<Self, Op> BlockReducer;
|
||||||
// TODO(andydavis) Compute reducer overhead correctly for the case where
|
// TODO(andydavis) Compute reducer overhead correctly for the case where
|
||||||
// we are preserving the inner most dimension, and a single reducer
|
// we are preserving the inner most dimension, and a single reducer
|
||||||
@ -1168,7 +1167,6 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType, MakePointer_>,
|
|||||||
} else if (!first_preserved_dim_allocated) {
|
} else if (!first_preserved_dim_allocated) {
|
||||||
// TODO(andydavis) Include output block size in this L1 working set
|
// TODO(andydavis) Include output block size in this L1 working set
|
||||||
// calculation.
|
// calculation.
|
||||||
const Index allocated = max_coeff_count - coeff_to_allocate;
|
|
||||||
const Index alloc_size = numext::maxi(
|
const Index alloc_size = numext::maxi(
|
||||||
static_cast<Index>(1), coeff_to_allocate / reducer_overhead);
|
static_cast<Index>(1), coeff_to_allocate / reducer_overhead);
|
||||||
(*target_input_block_sizes)[dim] =
|
(*target_input_block_sizes)[dim] =
|
||||||
|
@ -27,7 +27,7 @@ static array<Index, NumDims> RandomDims(int min_dim = 1, int max_dim = 20) {
|
|||||||
dims[i] = internal::random<int>(min_dim, max_dim);
|
dims[i] = internal::random<int>(min_dim, max_dim);
|
||||||
}
|
}
|
||||||
return dims;
|
return dims;
|
||||||
};
|
}
|
||||||
|
|
||||||
template <typename T, int NumDims, typename Device, bool Vectorizable,
|
template <typename T, int NumDims, typename Device, bool Vectorizable,
|
||||||
bool Tileable, int Layout>
|
bool Tileable, int Layout>
|
||||||
@ -117,7 +117,7 @@ static void test_execute_broadcasting(Device d)
|
|||||||
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
|
for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
|
||||||
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
|
VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
|
||||||
}
|
}
|
||||||
};
|
}
|
||||||
|
|
||||||
template <typename T, int NumDims, typename Device, bool Vectorizable,
|
template <typename T, int NumDims, typename Device, bool Vectorizable,
|
||||||
bool Tileable, int Layout>
|
bool Tileable, int Layout>
|
||||||
@ -155,7 +155,7 @@ static void test_execute_chipping_rvalue(Device d) {
|
|||||||
TEST_CHIPPING(5)
|
TEST_CHIPPING(5)
|
||||||
|
|
||||||
#undef TEST_CHIPPING
|
#undef TEST_CHIPPING
|
||||||
};
|
}
|
||||||
|
|
||||||
template <typename T, int NumDims, typename Device, bool Vectorizable,
|
template <typename T, int NumDims, typename Device, bool Vectorizable,
|
||||||
bool Tileable, int Layout>
|
bool Tileable, int Layout>
|
||||||
@ -207,7 +207,7 @@ static void test_execute_chipping_lvalue(Device d) {
|
|||||||
TEST_CHIPPING(5)
|
TEST_CHIPPING(5)
|
||||||
|
|
||||||
#undef TEST_CHIPPING
|
#undef TEST_CHIPPING
|
||||||
};
|
}
|
||||||
|
|
||||||
template <typename T, int NumDims, typename Device, bool Vectorizable,
|
template <typename T, int NumDims, typename Device, bool Vectorizable,
|
||||||
bool Tileable, int Layout>
|
bool Tileable, int Layout>
|
||||||
|
Loading…
x
Reference in New Issue
Block a user