improve accuracy of 3x3 direct eigenvector extraction

This commit is contained in:
Gael Guennebaud 2011-11-23 22:43:40 +01:00
parent be9b87377f
commit 01b4b6e456

View File

@ -570,15 +570,16 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
Scalar scale = mat.cwiseAbs().maxCoeff();
scale = (std::max)(scale,Scalar(1));
MatrixType scaledMat = mat / scale;
// Compute the eigenvalues
// compute the eigenvalues
computeRoots(scaledMat,eivals);
// compute the eigen vectors
if(computeEigenvectors)
{
Scalar safeNorm2 = Eigen::NumTraits<Scalar>::epsilon();
safeNorm2 *= safeNorm2;
if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
{
eivecs.setIdentity();
@ -588,28 +589,81 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
scaledMat = scaledMat.template selfadjointView<Lower>();
MatrixType tmp;
tmp = scaledMat;
tmp.diagonal().array () -= eivals(2);
VectorType cross01 = tmp.row(0).cross(tmp.row(1));
VectorType cross02 = tmp.row(0).cross(tmp.row(2));
Scalar n01 = cross01.squaredNorm();
Scalar n02 = cross02.squaredNorm();
if(n01>n02)
eivecs.col(2) = cross01 / sqrt(n01);
Scalar d0 = eivals(2) - eivals(1);
Scalar d1 = eivals(1) - eivals(0);
int k = d0 > d1 ? 2 : 0;
d0 = d0 > d1 ? d1 : d0;
tmp.diagonal().array () -= eivals(k);
VectorType cross;
Scalar n;
n = (cross = tmp.row(0).cross(tmp.row(1))).squaredNorm();
if(n>safeNorm2)
eivecs.col(k) = cross / sqrt(n);
else
eivecs.col(2) = cross02 / sqrt(n02);
{
n = (cross = tmp.row(0).cross(tmp.row(2))).squaredNorm();
if(n>safeNorm2)
eivecs.col(k) = cross / sqrt(n);
else
{
n = (cross = tmp.row(1).cross(tmp.row(2))).squaredNorm();
if(n>safeNorm2)
eivecs.col(k) = cross / sqrt(n);
else
{
// the input matrix and/or the eigenvaues probably contains some inf/NaN,
// => exit
// scale back to the original size.
eivals *= scale;
solver.m_info = NumericalIssue;
solver.m_isInitialized = true;
solver.m_eigenvectorsOk = computeEigenvectors;
return;
}
}
}
tmp = scaledMat;
tmp.diagonal().array() -= eivals(1);
eivecs.col(1) = tmp.row(0).cross(tmp.row(1));
Scalar n1 = eivecs.col(1).norm();
if(n1<=Eigen::NumTraits<Scalar>::epsilon())
eivecs.col(1) = eivecs.col(2).unitOrthogonal();
if(d0<=Eigen::NumTraits<Scalar>::epsilon())
eivecs.col(1) = eivecs.col(k).unitOrthogonal();
else
eivecs.col(1) /= n1;
{
n = (cross = eivecs.col(k).cross(tmp.row(0).normalized())).squaredNorm();
if(n>safeNorm2)
eivecs.col(1) = cross / sqrt(n);
else
{
n = (cross = eivecs.col(k).cross(tmp.row(1))).squaredNorm();
if(n>safeNorm2)
eivecs.col(1) = cross / sqrt(n);
else
{
n = (cross = eivecs.col(k).cross(tmp.row(2))).squaredNorm();
if(n>safeNorm2)
eivecs.col(1) = cross / sqrt(n);
else
{
// we should never reach this point,
// if so the last two eigenvalues are likely to ve very closed to each other
eivecs.col(1) = eivecs.col(k).unitOrthogonal();
}
}
}
// make sure that eivecs[1] is orthogonal to eivecs[2]
eivecs.col(1) = eivecs.col(2).cross(eivecs.col(1).cross(eivecs.col(2))).normalized();
eivecs.col(0) = eivecs.col(2).cross(eivecs.col(1));
Scalar d = eivecs.col(1).dot(eivecs.col(k));
eivecs.col(1) = (eivecs.col(1) - d * eivecs.col(k)).normalized();
}
eivecs.col(k==2 ? 0 : 2) = eivecs.col(k).cross(eivecs.col(1)).normalized();
}
}
// Rescale back to the original size.