Fuse computations into the Tensor contractions using output kernel

This commit is contained in:
Eugene Zhulenev 2018-07-10 13:16:38 -07:00
parent 5539587b1f
commit 01fd4096d3
6 changed files with 248 additions and 37 deletions

View File

@ -517,9 +517,15 @@ class TensorBase<Derived, ReadOnlyAccessors>
typedef Eigen::IndexPair<Index> DimensionPair;
template<typename OtherDerived, typename Dimensions> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorContractionOp<const Dimensions, const Derived, const OtherDerived>
const TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const NoOpOutputKernel>
contract(const OtherDerived& other, const Dimensions& dims) const {
return TensorContractionOp<const Dimensions, const Derived, const OtherDerived>(derived(), other.derived(), dims);
return TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const NoOpOutputKernel>(derived(), other.derived(), dims);
}
template<typename OtherDerived, typename Dimensions, typename OutputKernel> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const OutputKernel>
contract(const OtherDerived& other, const Dimensions& dims, const OutputKernel& output_kernel) const {
return TensorContractionOp<const Dimensions, const Derived, const OtherDerived, const OutputKernel>(derived(), other.derived(), dims, output_kernel);
}
// Convolutions.

View File

@ -85,8 +85,8 @@ template<typename LhsScalar, typename RhsScalar, typename Scalar>
#endif
template<typename Dimensions, typename LhsXprType, typename RhsXprType>
struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >
template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >
{
// Type promotion to handle the case where the types of the lhs and the rhs are different.
typedef typename gebp_traits<typename remove_const<typename LhsXprType::Scalar>::type,
@ -112,23 +112,24 @@ struct traits<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >
};
};
template<typename Dimensions, typename LhsXprType, typename RhsXprType>
struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, Eigen::Dense>
template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
struct eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, Eigen::Dense>
{
typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType>& type;
typedef const TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>& type;
};
template<typename Dimensions, typename LhsXprType, typename RhsXprType>
struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType> >::type>
template<typename Dimensions, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
struct nested<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType>, 1, typename eval<TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> >::type>
{
typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType> type;
typedef TensorContractionOp<Dimensions, LhsXprType, RhsXprType, OutputKernelType> type;
};
template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename Device_>
struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_>, Device_> > {
template<typename Indices_, typename LeftArgType_, typename RightArgType_, typename OutputKernelType_, typename Device_>
struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_, RightArgType_, OutputKernelType_>, Device_> > {
typedef Indices_ Indices;
typedef LeftArgType_ LeftArgType;
typedef RightArgType_ RightArgType;
typedef OutputKernelType_ OutputKernelType;
typedef Device_ Device;
// From NumDims below.
@ -137,8 +138,52 @@ struct traits<TensorEvaluator<const TensorContractionOp<Indices_, LeftArgType_,
} // end namespace internal
template<typename Indices, typename LhsXprType, typename RhsXprType>
class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType>, ReadOnlyAccessors>
// Tensor contraction params that should enable to get from output matrix
// 2-dimensional coordinates to the output tensor dimensions.
struct TensorContractionParams {
// TensorContraction evaluator assumes that both tensors are in ColMajor
// layout, if tensors are in RowMajor evaluator swap lhs with rhs.
bool swapped_arguments;
};
// Output kernel allows to fuse operations into the tensor contraction.
//
// Examples:
// 1. Elementwise Relu transformation following Conv2D.
// 2. AddBias to the Conv2D output channels dimension.
//
// See expected implementation in NoOpOutputKernel.
struct OutputKernel {
template <typename Index, typename Scalar>
using OutputMapper = internal::blas_data_mapper<Scalar, Index, ColMajor>;
};
// Output kernel that does absolutely nothing.
struct NoOpOutputKernel {
/**
* Tensor contraction evaluator calls this kernel after finishing each block
* of output matrix. Output blocks belong to the 2-dimensional output tensor.
*
* TensorContractionParams contains contraction dimensions information
* required to map output 2-d space into the expected output tensor space
* (potentially higher dimensional).
*
* \param[in] output_mapper Access to output tensor memory
* \param[in] params Tensor contraction parameters
* \param[in] i Index of a first row available through output_mapper
* \param[in] j Index of a first column available through output_mapper
* \param[in] num_rows Number of available rows
* \param[in] num_cols Number of available columns
*/
template <typename Index, typename Scalar>
EIGEN_ALWAYS_INLINE void operator()(
const OutputKernel::OutputMapper<Index, Scalar>& output_mapper,
const TensorContractionParams& params, Index i, Index j, Index num_rows,
Index num_cols) const {}
};
template<typename Indices, typename LhsXprType, typename RhsXprType, typename OutputKernelType>
class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXprType, RhsXprType, OutputKernelType>, ReadOnlyAccessors>
{
public:
typedef typename Eigen::internal::traits<TensorContractionOp>::Scalar Scalar;
@ -149,8 +194,10 @@ class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXp
typedef typename Eigen::internal::traits<TensorContractionOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionOp(
const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims)
: m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims) {}
const LhsXprType& lhs, const RhsXprType& rhs, const Indices& dims,
const OutputKernelType& output_kernel = OutputKernelType())
: m_lhs_xpr(lhs), m_rhs_xpr(rhs), m_indices(dims),
m_output_kernel(output_kernel) {}
EIGEN_DEVICE_FUNC
const Indices& indices() const { return m_indices; }
@ -164,10 +211,14 @@ class TensorContractionOp : public TensorBase<TensorContractionOp<Indices, LhsXp
const typename internal::remove_all<typename RhsXprType::Nested>::type&
rhsExpression() const { return m_rhs_xpr; }
EIGEN_DEVICE_FUNC
const OutputKernelType& outputKernel() const { return m_output_kernel; }
protected:
typename LhsXprType::Nested m_lhs_xpr;
typename RhsXprType::Nested m_rhs_xpr;
const Indices m_indices;
const OutputKernelType m_output_kernel;
};
@ -177,9 +228,10 @@ struct TensorContractionEvaluatorBase
typedef typename internal::traits<Derived>::Indices Indices;
typedef typename internal::traits<Derived>::LeftArgType LeftArgType;
typedef typename internal::traits<Derived>::RightArgType RightArgType;
typedef typename internal::traits<Derived>::OutputKernelType OutputKernelType;
typedef typename internal::traits<Derived>::Device Device;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
@ -221,6 +273,7 @@ struct TensorContractionEvaluatorBase
op.lhsExpression(), op.rhsExpression()), device),
m_rightImpl(choose(Cond<static_cast<int>(Layout) == static_cast<int>(ColMajor)>(),
op.rhsExpression(), op.lhsExpression()), device),
m_output_kernel(op.outputKernel()),
m_device(device),
m_result(NULL) {
EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) ==
@ -391,6 +444,13 @@ struct TensorContractionEvaluatorBase
numext::swap(m_dimensions[i], m_dimensions[j]);
}
}
// A set of parameters that will allow output kernel to get from output
// tensor dimensions (i, j) into the original tensor dimensions.
// TODO(ezhulenev): Add parameters required to infer output tensor index for
// more complex contractions than 2x2 on internal dimension.
m_tensor_contraction_params = {
/**swapped_arguments=*/static_cast<int>(Layout) == RowMajor};
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
@ -585,7 +645,15 @@ struct TensorContractionEvaluatorBase
// call gebp (matrix kernel)
// The parameters here are copied from Eigen's GEMM implementation
gebp(output.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, Scalar(1), -1, -1, 0, 0);
const auto output_mapper = output.getSubMapper(i2, j2);
gebp(output_mapper, blockA, blockB, actual_mc, actual_kc, actual_nc,
Scalar(1), -1, -1, 0, 0);
// We are done with this [i2, j2] output block.
if (k2 + kc >= k) {
m_output_kernel(output_mapper, m_tensor_contraction_params, i2, j2,
actual_mc, actual_nc);
}
}
}
}
@ -848,23 +916,26 @@ protected:
Index m_j_size;
Index m_k_size;
TensorContractionParams m_tensor_contraction_params;
TensorEvaluator<EvalLeftArgType, Device> m_leftImpl;
TensorEvaluator<EvalRightArgType, Device> m_rightImpl;
const Device& m_device;
OutputKernelType m_output_kernel;
Scalar* m_result;
bool m_can_use_xsmm;
};
// evaluator for default device
template<typename Indices, typename LeftArgType, typename RightArgType, typename Device>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> :
template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType, typename Device>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> :
public TensorContractionEvaluatorBase<
TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> > {
typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> > {
typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self;
typedef TensorContractionEvaluatorBase<Self> Base;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;

View File

@ -56,16 +56,16 @@ struct packRhsAndKernelArg {
} // end namespace internal
#endif // EIGEN_USE_SIMPLE_THREAD_POOL
template<typename Indices, typename LeftArgType, typename RightArgType>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> :
public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> > {
template<typename Indices, typename LeftArgType, typename RightArgType, typename OutputKernelType>
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> :
public TensorContractionEvaluatorBase<TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, ThreadPoolDevice> > {
typedef ThreadPoolDevice Device;
typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, Device> Self;
typedef TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType>, Device> Self;
typedef TensorContractionEvaluatorBase<Self> Base;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType> XprType;
typedef TensorContractionOp<Indices, LeftArgType, RightArgType, OutputKernelType> XprType;
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
@ -308,7 +308,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
this->m_k_strides);
Context<LhsPacker, RhsPacker, GebpKernel, LhsMapper, RhsMapper,
OutputMapper>(this->m_device, num_threads, lhs, rhs, buffer, m, n,
OutputMapper>(this, num_threads, lhs, rhs, buffer, m, n,
k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, nn0,
shard_by_col, parallel_pack)
.run();
@ -319,16 +319,18 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
typename LhsMapper, typename RhsMapper, typename OutputMapper>
class Context {
public:
Context(const Device& device, int num_threads, LhsMapper& lhs,
Context(const Self* self, int num_threads, LhsMapper& lhs,
RhsMapper& rhs, Scalar* buffer, Index tm, Index tn, Index tk, Index bm,
Index bn, Index bk, Index nm, Index nn, Index nk, Index gm,
Index gn, Index nm0, Index nn0, bool shard_by_col,
bool parallel_pack)
: device_(device),
: device_(self->m_device),
lhs_(lhs),
rhs_(rhs),
buffer_(buffer),
output_(buffer, tm),
output_kernel_(self->m_output_kernel),
tensor_contraction_params_(self->m_tensor_contraction_params),
num_threads_(num_threads),
shard_by_col_(shard_by_col),
parallel_pack_(parallel_pack),
@ -420,6 +422,8 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
RhsMapper& rhs_;
Scalar* const buffer_;
OutputMapper output_;
OutputKernelType output_kernel_;
TensorContractionParams tensor_contraction_params_;
const int num_threads_;
const bool shard_by_col_;
const bool parallel_pack_;
@ -536,19 +540,32 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
const Index mend = m * gm_ + gm(m);
if (shard_by_col_) {
for (Index n1 = n * gn_; n1 < nend; n1++) {
for (Index m1 = m * gm_; m1 < mend; m1++)
GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
packed_lhs_[k % (P - 1)][m1],
for (Index m1 = m * gm_; m1 < mend; m1++) {
const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
GebpKernel()(output_mapper, packed_lhs_[k % (P - 1)][m1],
packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
Scalar(1), -1, -1, 0, 0);
// We are done with the last task for the [m1, n1] block.
if (k + 1 == nk_) {
output_kernel_(output_mapper, tensor_contraction_params_,
m1 * bm_, n1 * bn_, bm(m1), bn(n1));
}
}
}
} else {
for (Index m1 = m * gm_; m1 < mend; m1++)
for (Index n1 = n * gn_; n1 < nend; n1++) {
GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
packed_lhs_[k % (P - 1)][m1],
const auto output_mapper = output_.getSubMapper(m1 * bm_, n1 * bn_);
GebpKernel()(output_mapper, packed_lhs_[k % (P - 1)][m1],
packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
Scalar(1), -1, -1, 0, 0);
// We are done with the last task for the [m1, n1] block.
if (k + 1 == nk_) {
output_kernel_(output_mapper, tensor_contraction_params_,
m1 * bm_, n1 * bn_, bm(m1), bn(n1));
}
}
}
signal_kernel(m, n, k + 1, false);
@ -747,6 +764,10 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
}
#else // EIGEN_USE_SIMPLE_THREAD_POOL
// TODO(ezhulenev): SimpleThreadPool will be removed in the future, and seems
// like it's not worth adding output kernel support here.
static_assert(std::is_same<OutputKernelType, const NoOpOutputKernel>::value,
"SimpleThreadPool does not support contraction output kernels.");
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
void evalProduct(Scalar* buffer) const {
@ -1065,6 +1086,10 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
}
#if defined(EIGEN_VECTORIZE_AVX) && defined(EIGEN_USE_LIBXSMM)
// TODO(ezhulenev): Add support for output kernels and LIBXSMM.
static_assert(std::is_same<OutputKernelType, const NoOpOutputKernel>::value,
"XSMM does not support contraction output kernels.");
template<int Alignment>
class ContextXsmm {
public:

View File

@ -65,7 +65,7 @@ template<typename Op, typename Dims, typename XprType, template <class> class Ma
template<typename XprType> class TensorIndexTupleOp;
template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp;
template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp;
template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
template<typename Dimensions, typename LeftXprType, typename RightXprType, typename OutputKernelType> class TensorContractionOp;
template<typename TargetType, typename XprType> class TensorConversionOp;
template<typename Dimensions, typename InputXprType, typename KernelXprType> class TensorConvolutionOp;
template<typename FFT, typename XprType, int FFTDataType, int FFTDirection> class TensorFFTOp;
@ -97,6 +97,8 @@ template<typename XprType> class TensorForcedEvalOp;
template<typename ExpressionType, typename DeviceType> class TensorDevice;
template<typename Derived, typename Device> struct TensorEvaluator;
class NoOpOutputKernel;
struct DefaultDevice;
struct ThreadPoolDevice;
struct GpuDevice;

View File

@ -510,6 +510,55 @@ static void test_const_inputs()
VERIFY_IS_APPROX(mat3(1,1), mat1(1,0)*mat2(0,1) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(2,1));
}
// Apply Sqrt to all output elements.
struct SqrtOutputKernel {
template <typename Index, typename Scalar>
EIGEN_ALWAYS_INLINE void operator()(
const OutputKernel::OutputMapper<Index, Scalar>& output_mapper,
const TensorContractionParams&, Index, Index, Index num_rows,
Index num_cols) const {
for (int i = 0; i < num_rows; ++i) {
for (int j = 0; j < num_cols; ++j) {
output_mapper(i, j) = std::sqrt(output_mapper(i, j));
}
}
}
};
template <int DataLayout>
static void test_large_contraction_with_output_kernel() {
Tensor<float, 4, DataLayout> t_left(30, 50, 8, 31);
Tensor<float, 5, DataLayout> t_right(8, 31, 7, 20, 10);
Tensor<float, 5, DataLayout> t_result(30, 50, 7, 20, 10);
t_left.setRandom();
t_right.setRandom();
// Put trash in mat4 to verify contraction clears output memory.
t_result.setRandom();
// Add a little offset so that the results won't be close to zero.
t_left += t_left.constant(1.0f);
t_right += t_right.constant(1.0f);
typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
MapXf m_left(t_left.data(), 1500, 248);
MapXf m_right(t_right.data(), 248, 1400);
Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400);
// this contraction should be equivalent to a single matrix multiplication
Eigen::array<DimPair, 2> dims({{DimPair(2, 0), DimPair(3, 1)}});
// compute results by separate methods
t_result = t_left.contract(t_right, dims, SqrtOutputKernel());
m_result = m_left * m_right;
for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) {
VERIFY(&t_result.data()[i] != &m_result.data()[i]);
VERIFY_IS_APPROX(t_result.data()[i], std::sqrt(m_result.data()[i]));
}
}
void test_cxx11_tensor_contraction()
{
CALL_SUBTEST(test_evals<ColMajor>());
@ -542,4 +591,6 @@ void test_cxx11_tensor_contraction()
CALL_SUBTEST(test_tensor_product<RowMajor>());
CALL_SUBTEST(test_const_inputs<ColMajor>());
CALL_SUBTEST(test_const_inputs<RowMajor>());
CALL_SUBTEST(test_large_contraction_with_output_kernel<ColMajor>());
CALL_SUBTEST(test_large_contraction_with_output_kernel<RowMajor>());
}

View File

@ -232,6 +232,60 @@ void test_multithread_contraction_agrees_with_singlethread() {
}
}
// Apply Sqrt to all output elements.
struct SqrtOutputKernel {
template <typename Index, typename Scalar>
EIGEN_ALWAYS_INLINE void operator()(
const OutputKernel::OutputMapper<Index, Scalar>& output_mapper,
const TensorContractionParams&, Index, Index, Index num_rows,
Index num_cols) const {
for (int i = 0; i < num_rows; ++i) {
for (int j = 0; j < num_cols; ++j) {
output_mapper(i, j) = std::sqrt(output_mapper(i, j));
}
}
}
};
template <int DataLayout>
static void test_multithread_contraction_with_output_kernel() {
typedef Tensor<float, 1>::DimensionPair DimPair;
const int num_threads = internal::random<int>(2, 11);
ThreadPool threads(num_threads);
Eigen::ThreadPoolDevice device(&threads, num_threads);
Tensor<float, 4, DataLayout> t_left(30, 50, 8, 31);
Tensor<float, 5, DataLayout> t_right(8, 31, 7, 20, 10);
Tensor<float, 5, DataLayout> t_result(30, 50, 7, 20, 10);
t_left.setRandom();
t_right.setRandom();
// Put trash in mat4 to verify contraction clears output memory.
t_result.setRandom();
// Add a little offset so that the results won't be close to zero.
t_left += t_left.constant(1.0f);
t_right += t_right.constant(1.0f);
typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
MapXf m_left(t_left.data(), 1500, 248);
MapXf m_right(t_right.data(), 248, 1400);
Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400);
// this contraction should be equivalent to a single matrix multiplication
Eigen::array<DimPair, 2> dims({{DimPair(2, 0), DimPair(3, 1)}});
// compute results by separate methods
t_result.device(device) = t_left.contract(t_right, dims, SqrtOutputKernel());
m_result = m_left * m_right;
for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) {
VERIFY(&t_result.data()[i] != &m_result.data()[i]);
VERIFY_IS_APPROX(t_result.data()[i], std::sqrt(m_result.data()[i]));
}
}
template<int DataLayout>
void test_full_contraction() {
@ -355,6 +409,8 @@ void test_cxx11_tensor_thread_pool()
CALL_SUBTEST_3(test_multithread_contraction_agrees_with_singlethread<ColMajor>());
CALL_SUBTEST_3(test_multithread_contraction_agrees_with_singlethread<RowMajor>());
CALL_SUBTEST_3(test_multithread_contraction_with_output_kernel<ColMajor>());
CALL_SUBTEST_3(test_multithread_contraction_with_output_kernel<RowMajor>());
// Exercise various cases that have been problematic in the past.
CALL_SUBTEST_4(test_contraction_corner_cases<ColMajor>());