improve the new experimental sparse product

This commit is contained in:
Gael Guennebaud 2010-01-05 19:56:59 +01:00
parent eda4e98c61
commit 023e0dfb4e
2 changed files with 66 additions and 41 deletions

View File

@ -450,6 +450,12 @@ class SparseMatrix
return *this;
}
template<typename Lhs, typename Rhs>
inline SparseMatrix& operator=(const SparseProduct<Lhs,Rhs>& product)
{
return Base::operator=(product);
}
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
{

View File

@ -147,13 +147,16 @@ static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType&
ei_assert(lhs.outerSize() == rhs.innerSize());
std::vector<bool> mask(rows,false);
Matrix<Scalar,Dynamic,1> values(rows);
Matrix<int,Dynamic,1> indices(rows);
// estimate the number of non zero entries
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
float ratio;
int t200 = rows/(log2(200)*1.39);
int t = (rows*100)/139;
res.resize(rows, cols);
res.reserve(int(ratioRes*rows*cols));
@ -162,6 +165,7 @@ static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType&
{
res.startVec(j);
int nnz = 0;
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
Scalar y = rhsIt.value();
@ -173,42 +177,42 @@ static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType&
if(!mask[i])
{
mask[i] = true;
values[i] = x * y;
res.insertBackNoCheck(j,i);
// values[i] = x * y;
// indices[nnz] = i;
++nnz;
}
else
res._valuePtr()[mask[i]] += x* y;
values[i] += x * y;
}
}
// FIXME reserve nnz non zeros
// FIXME implement fast sort algorithms for very small nnz
// if the result is sparse enough => use a quick sort
// otherwise => loop through the entire vector
SparseInnerVectorSet<ResultType,1> vec(res,j);
int nnz = vec.nonZeros();
if(rows/1.39 > nnz * log2(nnz))
{
std::sort(vec._innerIndexPtr(), vec._innerIndexPtr()+vec.nonZeros());
for (typename ResultType::InnerIterator it(res, j); it; ++it)
{
it.valueRef() = values[it.index()];
mask[it.index()] = false;
}
}
else
{
// dense path
int count = 0;
for(int i=0; i<rows; ++i)
{
if(mask[i])
{
mask[i] = false;
vec._innerIndexPtr()[count] = i;
vec._valuePtr()[count] = i;
++count;
}
}
}
// In order to avoid to perform an expensive log2 when the
// result is clearly very sparse we use a linear bound up to 200.
// if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
// {
// if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
// for(int k=0; k<nnz; ++k)
// {
// int i = indices[k];
// res.insertBackNoCheck(j,i) = values[i];
// mask[i] = false;
// }
// }
// else
// {
// // dense path
// for(int i=0; i<rows; ++i)
// {
// if(mask[i])
// {
// mask[i] = false;
// res.insertBackNoCheck(j,i) = values[i];
// }
// }
// }
}
res.finalize();
@ -218,6 +222,8 @@ static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType&
template<typename Lhs, typename Rhs, typename ResultType>
static void ei_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// return ei_sparse_product_impl2(lhs,rhs,res);
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
// make sure to call innerSize/outerSize since we fake the storage order.
@ -274,6 +280,7 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// std::cerr << __LINE__ << "\n";
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
ei_sparse_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res);
res.swap(_res);
@ -285,6 +292,7 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// std::cerr << __LINE__ << "\n";
// we need a col-major matrix to hold the result
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
SparseTemporaryType _res(res.rows(), res.cols());
@ -298,6 +306,7 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// std::cerr << __LINE__ << "\n";
// let's transpose the product to get a column x column product
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
ei_sparse_product_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res);
@ -310,11 +319,20 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// std::cerr << "here...\n";
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix colLhs(lhs);
ColMajorMatrix colRhs(rhs);
// std::cerr << "more...\n";
ei_sparse_product_impl<ColMajorMatrix,ColMajorMatrix,ResultType>(colLhs, colRhs, res);
// std::cerr << "OK.\n";
// let's transpose the product to get a column x column product
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
SparseTemporaryType _res(res.cols(), res.rows());
ei_sparse_product_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
res = _res.transpose();
// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
// SparseTemporaryType _res(res.cols(), res.rows());
// ei_sparse_product_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
// res = _res.transpose();
}
};
@ -327,6 +345,7 @@ template<typename Derived>
template<typename Lhs, typename Rhs>
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseProduct<Lhs,Rhs>& product)
{
// std::cerr << "there..." << typeid(Lhs).name() << " " << typeid(Lhs).name() << " " << (Derived::Flags&&RowMajorBit) << "\n";
ei_sparse_product_selector<
typename ei_cleantype<Lhs>::type,
typename ei_cleantype<Rhs>::type,
@ -348,7 +367,7 @@ struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
ei_sparse_product_impl2<Lhs,Rhs,ResultType>(lhs, rhs, res, 0);
ei_sparse_product_impl2<Lhs,Rhs,ResultType>(lhs, rhs, res);
}
};
@ -357,11 +376,11 @@ struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
RowMajorMatrix rhsRow = rhs;
RowMajorMatrix resRow(res.rows(), res.cols());
ei_sparse_product_impl2<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
res = resRow;
// typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
// RowMajorMatrix rhsRow = rhs;
// RowMajorMatrix resRow(res.rows(), res.cols());
// ei_sparse_product_impl2<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
// res = resRow;
}
};