bug #1592: makes partial min/max reductions trigger an assertion on inputs with a zero reduction length (+doc and tests)

This commit is contained in:
Gael Guennebaud 2019-01-15 15:13:24 +01:00
parent f8bc5cb39e
commit 027e44ed24
3 changed files with 59 additions and 3 deletions

View File

@ -173,6 +173,14 @@ struct member_redux {
* Example: \include MatrixBase_colwise_iterator_cxx11.cpp
* Output: \verbinclude MatrixBase_colwise_iterator_cxx11.out
*
* For a partial reduction on an empty input, some rules apply.
* For the sake of clarity, let's consider a vertical reduction:
* - If the number of columns is zero, then a 1x0 row-major vector expression is returned.
* - Otherwise, if the number of rows is zero, then
* - a row vector of zeros is returned for sum-like reductions (sum, squaredNorm, norm, etc.)
* - a row vector of ones is returned for a product reduction (e.g., <code>MatrixXd(n,0).colwise().prod()</code>)
* - an assert is triggered for all other reductions (minCoeff,maxCoeff,redux(bin_op))
*
* \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr
*/
template<typename ExpressionType, int Direction> class VectorwiseOp
@ -294,13 +302,19 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* The template parameter \a BinaryOp is the type of the functor
* of the custom redux operator. Note that func must be an associative operator.
*
* \warning the size along the reduction direction must be strictly positive,
* otherwise an assertion is triggered.
*
* \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise()
*/
template<typename BinaryOp>
EIGEN_DEVICE_FUNC
const typename ReduxReturnType<BinaryOp>::Type
redux(const BinaryOp& func = BinaryOp()) const
{ return typename ReduxReturnType<BinaryOp>::Type(_expression(), internal::member_redux<BinaryOp,Scalar>(func)); }
{
eigen_assert(redux_length()>0 && "you are using an empty matrix");
return typename ReduxReturnType<BinaryOp>::Type(_expression(), internal::member_redux<BinaryOp,Scalar>(func));
}
typedef typename ReturnType<internal::member_minCoeff>::Type MinCoeffReturnType;
typedef typename ReturnType<internal::member_maxCoeff>::Type MaxCoeffReturnType;
@ -325,6 +339,9 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
/** \returns a row (or column) vector expression of the smallest coefficient
* of each column (or row) of the referenced expression.
*
* \warning the size along the reduction direction must be strictly positive,
* otherwise an assertion is triggered.
*
* \warning the result is undefined if \c *this contains NaN.
*
* Example: \include PartialRedux_minCoeff.cpp
@ -333,11 +350,17 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* \sa DenseBase::minCoeff() */
EIGEN_DEVICE_FUNC
const MinCoeffReturnType minCoeff() const
{ return MinCoeffReturnType(_expression()); }
{
eigen_assert(redux_length()>0 && "you are using an empty matrix");
return MinCoeffReturnType(_expression());
}
/** \returns a row (or column) vector expression of the largest coefficient
* of each column (or row) of the referenced expression.
*
* \warning the size along the reduction direction must be strictly positive,
* otherwise an assertion is triggered.
*
* \warning the result is undefined if \c *this contains NaN.
*
* Example: \include PartialRedux_maxCoeff.cpp
@ -346,7 +369,10 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* \sa DenseBase::maxCoeff() */
EIGEN_DEVICE_FUNC
const MaxCoeffReturnType maxCoeff() const
{ return MaxCoeffReturnType(_expression()); }
{
eigen_assert(redux_length()>0 && "you are using an empty matrix");
return MaxCoeffReturnType(_expression());
}
/** \returns a row (or column) vector expression of the squared norm
* of each column (or row) of the referenced expression.
@ -690,6 +716,10 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
const HNormalizedReturnType hnormalized() const;
protected:
Index redux_length() const
{
return Direction==Vertical ? m_matrix.rows() : m_matrix.cols();
}
ExpressionTypeNested m_matrix;
};

View File

@ -134,6 +134,7 @@ template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m)
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType;
typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType;
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixX;
Index rows = m.rows();
Index cols = m.cols();
@ -247,6 +248,26 @@ template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m)
m1 = m1.rowwise() - (m1.colwise().sum()/RealScalar(m1.rows()));
VERIFY_IS_APPROX( m1, m2 );
VERIFY_EVALUATION_COUNT( m2 = (m1.rowwise() - m1.colwise().sum()/RealScalar(m1.rows())), (MatrixType::RowsAtCompileTime!=1 ? 1 : 0) );
// test empty expressions
VERIFY_IS_APPROX(m1.matrix().middleCols(0,0).rowwise().sum().eval(), MatrixX::Zero(rows,1));
VERIFY_IS_APPROX(m1.matrix().middleRows(0,0).colwise().sum().eval(), MatrixX::Zero(1,cols));
VERIFY_IS_APPROX(m1.matrix().middleCols(0,fix<0>).rowwise().sum().eval(), MatrixX::Zero(rows,1));
VERIFY_IS_APPROX(m1.matrix().middleRows(0,fix<0>).colwise().sum().eval(), MatrixX::Zero(1,cols));
VERIFY_IS_APPROX(m1.matrix().middleCols(0,0).rowwise().prod().eval(), MatrixX::Ones(rows,1));
VERIFY_IS_APPROX(m1.matrix().middleRows(0,0).colwise().prod().eval(), MatrixX::Ones(1,cols));
VERIFY_IS_APPROX(m1.matrix().middleCols(0,fix<0>).rowwise().prod().eval(), MatrixX::Ones(rows,1));
VERIFY_IS_APPROX(m1.matrix().middleRows(0,fix<0>).colwise().prod().eval(), MatrixX::Ones(1,cols));
VERIFY_IS_APPROX(m1.matrix().middleCols(0,0).rowwise().squaredNorm().eval(), MatrixX::Zero(rows,1));
VERIFY_RAISES_ASSERT(m1.real().middleCols(0,0).rowwise().minCoeff().eval());
VERIFY_RAISES_ASSERT(m1.real().middleRows(0,0).colwise().maxCoeff().eval());
VERIFY_IS_EQUAL(m1.real().middleRows(0,0).rowwise().maxCoeff().eval().rows(),0);
VERIFY_IS_EQUAL(m1.real().middleCols(0,0).colwise().maxCoeff().eval().cols(),0);
VERIFY_IS_EQUAL(m1.real().middleRows(0,fix<0>).rowwise().maxCoeff().eval().rows(),0);
VERIFY_IS_EQUAL(m1.real().middleCols(0,fix<0>).colwise().maxCoeff().eval().cols(),0);
}
EIGEN_DECLARE_TEST(vectorwiseop)
@ -256,6 +277,7 @@ EIGEN_DECLARE_TEST(vectorwiseop)
CALL_SUBTEST_3( vectorwiseop_array(ArrayXXf(3, 4)) );
CALL_SUBTEST_4( vectorwiseop_matrix(Matrix4cf()) );
CALL_SUBTEST_5( vectorwiseop_matrix(Matrix4f()) );
CALL_SUBTEST_5( vectorwiseop_matrix(Vector4f()) );
CALL_SUBTEST_5( vectorwiseop_matrix(Matrix<float,4,5>()) );
CALL_SUBTEST_6( vectorwiseop_matrix(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
CALL_SUBTEST_7( vectorwiseop_matrix(VectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );

View File

@ -16,9 +16,13 @@ template<typename MatrixType> void zeroReduction(const MatrixType& m) {
VERIFY(!m.any());
VERIFY(m.prod()==1);
VERIFY(m.sum()==0);
VERIFY(m.norm()==0);
VERIFY(m.squaredNorm()==0);
VERIFY(m.count()==0);
VERIFY(m.allFinite());
VERIFY(!m.hasNaN());
VERIFY_RAISES_ASSERT( m.minCoeff() );
VERIFY_RAISES_ASSERT( m.maxCoeff() );
}