Added missing NEON pcasts, update packetmath tests.

The NEON `pcast` operators are all implemented and tested for existing
packets. This requires adding a `pcast(a,b,c,d,e,f,g,h)` for casting
between `int64_t` and `int8_t` in `GenericPacketMath.h`.

Removed incorrect `HasHalfPacket`  definition for NEON's
`Packet2l`/`Packet2ul`.

Adjustments were also made to the `packetmath` tests. These include
- minor bug fixes for cast tests (i.e. 4:1 casts, only casting for
  packets that are vectorizable)
- added 8:1 cast tests
- random number generation
  - original had uninteresting 0 to 0 casts for many casts between
    floating-point and integers, and exhibited signed overflow
    undefined behavior

Tested:
```
$ aarch64-linux-gnu-g++ -static -I./ '-DEIGEN_TEST_PART_ALL=1' test/packetmath.cpp -o packetmath
$ adb push packetmath /data/local/tmp/
$ adb shell "/data/local/tmp/packetmath"
```
This commit is contained in:
Antonio Sanchez 2020-06-19 16:07:05 -07:00
parent 386d809bde
commit 03ebdf6acb
4 changed files with 1879 additions and 607 deletions

View File

@ -162,12 +162,17 @@ EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/) {
return static_cast<TgtPacket>(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/, const SrcPacket& /*c*/, const SrcPacket& /*d*/) {
return static_cast<TgtPacket>(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/, const SrcPacket& /*c*/, const SrcPacket& /*d*/,
const SrcPacket& /*e*/, const SrcPacket& /*f*/, const SrcPacket& /*g*/, const SrcPacket& /*h*/) {
return static_cast<TgtPacket>(a);
}
/** \internal \returns reinterpret_cast<Target>(a) */
template <typename Target, typename Packet>

View File

@ -338,7 +338,7 @@ struct packet_traits<int64_t> : default_packet_traits
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasHalfPacket = 1,
HasHalfPacket = 0,
HasCmp = 1,
HasAdd = 1,
@ -368,7 +368,7 @@ struct packet_traits<uint64_t> : default_packet_traits
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasHalfPacket = 1,
HasHalfPacket = 0,
HasCmp = 1,
HasAdd = 1,

File diff suppressed because it is too large Load Diff

View File

@ -11,38 +11,66 @@
#include "packetmath_test_shared.h"
template <typename T>
inline T REF_ADD(const T& a, const T& b) { return a + b;}
inline T REF_ADD(const T& a, const T& b) {
return a + b;
}
template <typename T>
inline T REF_SUB(const T& a, const T& b) { return a - b;}
inline T REF_SUB(const T& a, const T& b) {
return a - b;
}
template <typename T>
inline T REF_MUL(const T& a, const T& b) { return a * b;}
inline T REF_MUL(const T& a, const T& b) {
return a * b;
}
template <typename T>
inline T REF_DIV(const T& a, const T& b) { return a / b;}
inline T REF_DIV(const T& a, const T& b) {
return a / b;
}
template <typename T>
inline T REF_ABS_DIFF(const T& a, const T& b) { return a>b ? a - b : b-a;}
inline T REF_ABS_DIFF(const T& a, const T& b) {
return a > b ? a - b : b - a;
}
// Specializations for bool.
template <>
inline bool REF_ADD(const bool& a, const bool& b) { return a || b;}
inline bool REF_ADD(const bool& a, const bool& b) {
return a || b;
}
template <>
inline bool REF_SUB(const bool& a, const bool& b) { return a ^ b;}
inline bool REF_SUB(const bool& a, const bool& b) {
return a ^ b;
}
template <>
inline bool REF_MUL(const bool& a, const bool& b) { return a && b;}
inline bool REF_MUL(const bool& a, const bool& b) {
return a && b;
}
// Uses pcast to cast from one array to another.
template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
struct pcast_array {
static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size, typename internal::unpacket_traits<TgtPacket>::type* dst) {
struct pcast_array;
template <typename SrcPacket, typename TgtPacket, int TgtCoeffRatio>
struct pcast_array<SrcPacket, TgtPacket, 1, TgtCoeffRatio> {
typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
static void cast(const SrcScalar* src, size_t size, TgtScalar* dst) {
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
for (size_t i=0; i<size; i+=TgtPacketSize) {
size_t i;
for (i = 0; i < size && i + SrcPacketSize <= size; i += TgtPacketSize) {
internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(internal::ploadu<SrcPacket>(src + i)));
}
// Leftovers that cannot be loaded into a packet.
for (; i < size; ++i) {
dst[i] = static_cast<TgtScalar>(src[i]);
}
}
};
template <typename SrcPacket, typename TgtPacket>
struct pcast_array<SrcPacket, TgtPacket, 2, 1> {
static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size, typename internal::unpacket_traits<TgtPacket>::type* dst) {
static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
typename internal::unpacket_traits<TgtPacket>::type* dst) {
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
for (size_t i = 0; i < size; i += TgtPacketSize) {
@ -55,7 +83,8 @@ struct pcast_array<SrcPacket, TgtPacket, 2, 1>{
template <typename SrcPacket, typename TgtPacket>
struct pcast_array<SrcPacket, TgtPacket, 4, 1> {
static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size, typename internal::unpacket_traits<TgtPacket>::type* dst) {
static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
typename internal::unpacket_traits<TgtPacket>::type* dst) {
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
for (size_t i = 0; i < size; i += TgtPacketSize) {
@ -63,7 +92,27 @@ struct pcast_array<SrcPacket, TgtPacket, 4, 1>{
SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize);
SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize);
internal::pstoreu(dst+i, internal::pcast<SrcPacket,TgtPacket>(a, b));
internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d));
}
}
};
template <typename SrcPacket, typename TgtPacket>
struct pcast_array<SrcPacket, TgtPacket, 8, 1> {
static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size,
typename internal::unpacket_traits<TgtPacket>::type* dst) {
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
for (size_t i = 0; i < size; i += TgtPacketSize) {
SrcPacket a = internal::ploadu<SrcPacket>(src + i);
SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize);
SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize);
SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize);
SrcPacket e = internal::ploadu<SrcPacket>(src + i + 4 * SrcPacketSize);
SrcPacket f = internal::ploadu<SrcPacket>(src + i + 5 * SrcPacketSize);
SrcPacket g = internal::ploadu<SrcPacket>(src + i + 6 * SrcPacketSize);
SrcPacket h = internal::ploadu<SrcPacket>(src + i + 7 * SrcPacketSize);
internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d, e, f, g, h));
}
}
};
@ -76,6 +125,129 @@ struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, fals
static void run() {}
};
// Generates random values that fit in both SrcScalar and TgtScalar without
// overflowing when cast.
template <typename SrcScalar, typename TgtScalar, typename EnableIf = void>
struct random_without_cast_overflow {
static SrcScalar value() { return internal::random<SrcScalar>(); }
};
// Widening integer cast signed to unsigned.
template <typename SrcScalar, typename TgtScalar>
struct random_without_cast_overflow<
SrcScalar, TgtScalar,
typename internal::enable_if<NumTraits<SrcScalar>::IsInteger && NumTraits<TgtScalar>::IsInteger &&
!NumTraits<TgtScalar>::IsSigned &&
(std::numeric_limits<SrcScalar>::digits < std::numeric_limits<TgtScalar>::digits ||
(std::numeric_limits<SrcScalar>::digits == std::numeric_limits<TgtScalar>::digits &&
NumTraits<SrcScalar>::IsSigned))>::type> {
static SrcScalar value() {
SrcScalar a = internal::random<SrcScalar>();
return a < SrcScalar(0) ? -(a + 1) : a;
}
};
// Narrowing integer cast to unsigned.
template <typename SrcScalar, typename TgtScalar>
struct random_without_cast_overflow<
SrcScalar, TgtScalar,
typename internal::enable_if<
NumTraits<SrcScalar>::IsInteger && NumTraits<TgtScalar>::IsInteger && !NumTraits<SrcScalar>::IsSigned &&
(std::numeric_limits<SrcScalar>::digits > std::numeric_limits<TgtScalar>::digits)>::type> {
static SrcScalar value() {
TgtScalar b = internal::random<TgtScalar>();
return static_cast<SrcScalar>(b < TgtScalar(0) ? -(b + 1) : b);
}
};
// Narrowing integer cast to signed.
template <typename SrcScalar, typename TgtScalar>
struct random_without_cast_overflow<
SrcScalar, TgtScalar,
typename internal::enable_if<
NumTraits<SrcScalar>::IsInteger && NumTraits<TgtScalar>::IsInteger && NumTraits<SrcScalar>::IsSigned &&
(std::numeric_limits<SrcScalar>::digits > std::numeric_limits<TgtScalar>::digits)>::type> {
static SrcScalar value() {
TgtScalar b = internal::random<TgtScalar>();
return static_cast<SrcScalar>(b);
}
};
// Unsigned to signed narrowing cast.
template <typename SrcScalar, typename TgtScalar>
struct random_without_cast_overflow<
SrcScalar, TgtScalar,
typename internal::enable_if<NumTraits<SrcScalar>::IsInteger && NumTraits<TgtScalar>::IsInteger &&
!NumTraits<SrcScalar>::IsSigned && NumTraits<TgtScalar>::IsSigned &&
(std::numeric_limits<SrcScalar>::digits ==
std::numeric_limits<TgtScalar>::digits)>::type> {
static SrcScalar value() { return internal::random<SrcScalar>() / 2; }
};
template <typename Scalar>
struct is_floating_point {
enum { value = 0 };
};
template <>
struct is_floating_point<float> {
enum { value = 1 };
};
template <>
struct is_floating_point<double> {
enum { value = 1 };
};
template <>
struct is_floating_point<half> {
enum { value = 1 };
};
template <>
struct is_floating_point<bfloat16> {
enum { value = 1 };
};
// Floating-point to integer, full precision.
template <typename SrcScalar, typename TgtScalar>
struct random_without_cast_overflow<
SrcScalar, TgtScalar,
typename internal::enable_if<is_floating_point<SrcScalar>::value && NumTraits<TgtScalar>::IsInteger &&
(std::numeric_limits<TgtScalar>::digits <=
std::numeric_limits<SrcScalar>::digits)>::type> {
static SrcScalar value() { return static_cast<SrcScalar>(internal::random<TgtScalar>()); }
};
// Floating-point to integer, narrowing precision.
template <typename SrcScalar, typename TgtScalar>
struct random_without_cast_overflow<
SrcScalar, TgtScalar,
typename internal::enable_if<is_floating_point<SrcScalar>::value && NumTraits<TgtScalar>::IsInteger &&
(std::numeric_limits<TgtScalar>::digits >
std::numeric_limits<SrcScalar>::digits)>::type> {
static SrcScalar value() {
static const int BitShift = std::numeric_limits<TgtScalar>::digits - std::numeric_limits<SrcScalar>::digits;
return static_cast<SrcScalar>(internal::random<TgtScalar>() >> BitShift);
}
};
// Floating-point target from integer, re-use above logic.
template <typename SrcScalar, typename TgtScalar>
struct random_without_cast_overflow<
SrcScalar, TgtScalar,
typename internal::enable_if<NumTraits<SrcScalar>::IsInteger && is_floating_point<TgtScalar>::value>::type> {
static SrcScalar value() {
return static_cast<SrcScalar>(random_without_cast_overflow<TgtScalar, SrcScalar>::value());
}
};
// Floating-point narrowing conversion.
template <typename SrcScalar, typename TgtScalar>
struct random_without_cast_overflow<
SrcScalar, TgtScalar,
typename internal::enable_if<is_floating_point<SrcScalar>::value && is_floating_point<TgtScalar>::value &&
(std::numeric_limits<SrcScalar>::digits >
std::numeric_limits<TgtScalar>::digits)>::type> {
static SrcScalar value() { return static_cast<SrcScalar>(internal::random<TgtScalar>()); }
};
template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio>
struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, true> {
static void run() {
@ -83,23 +255,20 @@ struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, true
typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
static const int DataSize = SrcPacketSize*SrcCoeffRatio;
VERIFY(DataSize == TgtPacketSize*TgtCoeffRatio && "Packet sizes and cast ratios are mismatched.");
static const int BlockSize = SrcPacketSize * SrcCoeffRatio;
eigen_assert(BlockSize == TgtPacketSize * TgtCoeffRatio && "Packet sizes and cast ratios are mismatched.");
static const int DataSize = 10 * BlockSize;
EIGEN_ALIGN_MAX SrcScalar data1[DataSize];
EIGEN_ALIGN_MAX TgtScalar data2[DataSize];
EIGEN_ALIGN_MAX TgtScalar ref[DataSize];
// Construct a packet of scalars that will not overflow when casting
for (int i = 0; i < DataSize; ++i) {
const SrcScalar a = Array<SrcScalar,1,1>::Random().value();
const TgtScalar b = Array<TgtScalar,1,1>::Random().value();
const SrcScalar c = sizeof(TgtScalar) > sizeof(SrcScalar) ? static_cast<SrcScalar>(b) : a;
data1[i] = (NumTraits<SrcScalar>::IsSigned && !NumTraits<TgtScalar>::IsSigned) ? numext::abs(c) : c;
data1[i] = random_without_cast_overflow<SrcScalar, TgtScalar>::value();
}
for (int i=0; i<DataSize; ++i)
ref[i] = static_cast<const TgtScalar>(data1[i]);
for (int i = 0; i < DataSize; ++i) ref[i] = static_cast<const TgtScalar>(data1[i]);
pcast_array<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio>::cast(data1, DataSize, data2);
@ -107,48 +276,72 @@ struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, true
}
};
template<typename SrcScalar, typename TgtScalar>
void test_cast() {
typedef typename internal::packet_traits<SrcScalar> SrcPacketTraits;
typedef typename internal::packet_traits<TgtScalar> TgtPacketTraits;
template <typename SrcPacket, typename TgtPacket>
struct test_cast {
static void run() {
typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar;
typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar;
typedef typename internal::type_casting_traits<SrcScalar, TgtScalar> TypeCastingTraits;
static const int SrcCoeffRatio = TypeCastingTraits::SrcCoeffRatio;
static const int TgtCoeffRatio = TypeCastingTraits::TgtCoeffRatio;
static const bool HasFullCast = TypeCastingTraits::VectorizedCast;
static const bool HasHalfCast = HasFullCast && internal::packet_traits<SrcScalar>::HasHalfPacket && internal::packet_traits<TgtScalar>::HasHalfPacket;
test_cast_helper<typename SrcPacketTraits::type, typename TgtPacketTraits::type, SrcCoeffRatio, TgtCoeffRatio, HasFullCast>::run();
test_cast_helper<typename SrcPacketTraits::half, typename TgtPacketTraits::half, SrcCoeffRatio, TgtCoeffRatio, HasHalfCast>::run();
static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size;
static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size;
static const bool HasCast =
internal::unpacket_traits<SrcPacket>::vectorizable && internal::unpacket_traits<TgtPacket>::vectorizable &&
TypeCastingTraits::VectorizedCast && (SrcPacketSize * SrcCoeffRatio == TgtPacketSize * TgtCoeffRatio);
test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, HasCast>::run();
}
};
template<typename Scalar, typename Packet> void packetmath_pcast_ops() {
const static bool IsFullPacket = internal::is_same<typename internal::packet_traits<Scalar>::type,Packet>::value;
if (IsFullPacket) {
test_cast<Scalar, float>();
test_cast<Scalar, double>();
test_cast<Scalar, int8_t>();
test_cast<Scalar, uint8_t>();
test_cast<Scalar, int16_t>();
test_cast<Scalar, uint16_t>();
test_cast<Scalar, int32_t>();
test_cast<Scalar, uint32_t>();
test_cast<Scalar, int64_t>();
test_cast<Scalar, uint64_t>();
template <typename SrcPacket, typename TgtScalar,
typename TgtPacket = typename internal::packet_traits<TgtScalar>::type,
bool Vectorized = internal::packet_traits<TgtScalar>::Vectorizable,
bool HasHalf = !internal::is_same<typename internal::unpacket_traits<TgtPacket>::half, TgtPacket>::value>
struct test_cast_runner;
template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, false> {
static void run() { test_cast<SrcPacket, TgtPacket>::run(); }
};
template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, true> {
static void run() {
test_cast<SrcPacket, TgtPacket>::run();
test_cast_runner<SrcPacket, TgtScalar, typename internal::unpacket_traits<TgtPacket>::half>::run();
}
};
template <typename SrcPacket, typename TgtScalar, typename TgtPacket>
struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, false, false> {
static void run() {}
};
template <typename Scalar, typename Packet>
void packetmath_pcast_ops() {
test_cast_runner<Packet, float>::run();
test_cast_runner<Packet, double>::run();
test_cast_runner<Packet, int8_t>::run();
test_cast_runner<Packet, uint8_t>::run();
test_cast_runner<Packet, int16_t>::run();
test_cast_runner<Packet, uint16_t>::run();
test_cast_runner<Packet, int32_t>::run();
test_cast_runner<Packet, uint32_t>::run();
test_cast_runner<Packet, int64_t>::run();
test_cast_runner<Packet, uint64_t>::run();
test_cast_runner<Packet, bool>::run();
test_cast_runner<Packet, half>::run();
}
template <typename Scalar, typename Packet>
void packetmath_boolean_mask_ops()
{
void packetmath_boolean_mask_ops() {
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = 2 * PacketSize;
EIGEN_ALIGN_MAX Scalar data1[size];
EIGEN_ALIGN_MAX Scalar data2[size];
EIGEN_ALIGN_MAX Scalar ref[size];
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>();
}
CHECK_CWISE1(internal::ptrue, internal::ptrue);
@ -164,21 +357,18 @@ void packetmath_boolean_mask_ops()
// (for some compilers) compute the bitwise and with 0x1 of the results to keep the value in [0,1].
#ifdef EIGEN_PACKET_MATH_SSE_H
template <>
void packetmath_boolean_mask_ops<bool, internal::Packet16b>()
{
}
void packetmath_boolean_mask_ops<bool, internal::Packet16b>() {}
#endif
template<typename Scalar,typename Packet> void packetmath()
{
template <typename Scalar, typename Packet>
void packetmath() {
typedef internal::packet_traits<Scalar> PacketTraits;
const int PacketSize = internal::unpacket_traits<Packet>::size;
typedef typename NumTraits<Scalar>::Real RealScalar;
if (g_first_pass)
std::cerr << "=== Testing packet of type '" << typeid(Packet).name()
<< "' and scalar type '" << typeid(Scalar).name()
<< "' and size '" << PacketSize << "' ===\n" ;
std::cerr << "=== Testing packet of type '" << typeid(Packet).name() << "' and scalar type '"
<< typeid(Scalar).name() << "' and size '" << PacketSize << "' ===\n";
const int max_size = PacketSize > 4 ? PacketSize : 4;
const int size = PacketSize * max_size;
@ -187,8 +377,7 @@ template<typename Scalar,typename Packet> void packetmath()
EIGEN_ALIGN_MAX Scalar data3[size];
EIGEN_ALIGN_MAX Scalar ref[size];
RealScalar refvalue = RealScalar(0);
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>() / RealScalar(PacketSize);
data2[i] = internal::random<Scalar>() / RealScalar(PacketSize);
refvalue = (std::max)(refvalue, numext::abs(data1[i]));
@ -197,48 +386,38 @@ template<typename Scalar,typename Packet> void packetmath()
internal::pstore(data2, internal::pload<Packet>(data1));
VERIFY(test::areApprox(data1, data2, PacketSize) && "aligned load/store");
for (int offset=0; offset<PacketSize; ++offset)
{
for (int offset = 0; offset < PacketSize; ++offset) {
internal::pstore(data2, internal::ploadu<Packet>(data1 + offset));
VERIFY(test::areApprox(data1 + offset, data2, PacketSize) && "internal::ploadu");
}
for (int offset=0; offset<PacketSize; ++offset)
{
for (int offset = 0; offset < PacketSize; ++offset) {
internal::pstoreu(data2 + offset, internal::pload<Packet>(data1));
VERIFY(test::areApprox(data1, data2 + offset, PacketSize) && "internal::pstoreu");
}
if (internal::unpacket_traits<Packet>::masked_load_available)
{
if (internal::unpacket_traits<Packet>::masked_load_available) {
test::packet_helper<internal::unpacket_traits<Packet>::masked_load_available, Packet> h;
unsigned long long max_umask = (0x1ull << PacketSize);
for (int offset=0; offset<PacketSize; ++offset)
{
for (unsigned long long umask=0; umask<max_umask; ++umask)
{
for (int offset = 0; offset < PacketSize; ++offset) {
for (unsigned long long umask = 0; umask < max_umask; ++umask) {
h.store(data2, h.load(data1 + offset, umask));
for (int k=0; k<PacketSize; ++k)
data3[k] = ((umask & ( 0x1ull << k )) >> k) ? data1[k+offset] : Scalar(0);
for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0);
VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::ploadu masked");
}
}
}
if (internal::unpacket_traits<Packet>::masked_store_available)
{
if (internal::unpacket_traits<Packet>::masked_store_available) {
test::packet_helper<internal::unpacket_traits<Packet>::masked_store_available, Packet> h;
unsigned long long max_umask = (0x1ull << PacketSize);
for (int offset=0; offset<PacketSize; ++offset)
{
for (unsigned long long umask=0; umask<max_umask; ++umask)
{
for (int offset = 0; offset < PacketSize; ++offset) {
for (unsigned long long umask = 0; umask < max_umask; ++umask) {
internal::pstore(data2, internal::pset1<Packet>(Scalar(0)));
h.store(data2, h.loadu(data1 + offset), umask);
for (int k=0; k<PacketSize; ++k)
data3[k] = ((umask & ( 0x1ull << k )) >> k) ? data1[k+offset] : Scalar(0);
for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0);
VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::pstoreu masked");
}
}
@ -253,21 +432,17 @@ template<typename Scalar,typename Packet> void packetmath()
CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul);
CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv);
if (PacketTraits::HasNegate)
CHECK_CWISE1(internal::negate, internal::pnegate);
if (PacketTraits::HasNegate) CHECK_CWISE1(internal::negate, internal::pnegate);
CHECK_CWISE1(numext::conj, internal::pconj);
for(int offset=0;offset<3;++offset)
{
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[offset];
for (int offset = 0; offset < 3; ++offset) {
for (int i = 0; i < PacketSize; ++i) ref[i] = data1[offset];
internal::pstore(data2, internal::pset1<Packet>(data1[offset]));
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::pset1");
}
{
for (int i=0; i<PacketSize*4; ++i)
ref[i] = data1[i/PacketSize];
for (int i = 0; i < PacketSize * 4; ++i) ref[i] = data1[i / PacketSize];
Packet A0, A1, A2, A3;
internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3);
internal::pstore(data2 + 0 * PacketSize, A0);
@ -278,8 +453,7 @@ template<typename Scalar,typename Packet> void packetmath()
}
{
for (int i=0; i<PacketSize*2; ++i)
ref[i] = data1[i/PacketSize];
for (int i = 0; i < PacketSize * 2; ++i) ref[i] = data1[i / PacketSize];
Packet A0, A1;
internal::pbroadcast2<Packet>(data1, A0, A1);
internal::pstore(data2 + 0 * PacketSize, A0);
@ -289,23 +463,18 @@ template<typename Scalar,typename Packet> void packetmath()
VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst");
if(PacketSize>1)
{
if (PacketSize > 1) {
// apply different offsets to check that ploaddup is robust to unaligned inputs
for(int offset=0;offset<4;++offset)
{
for(int i=0;i<PacketSize/2;++i)
ref[2*i+0] = ref[2*i+1] = data1[offset+i];
for (int offset = 0; offset < 4; ++offset) {
for (int i = 0; i < PacketSize / 2; ++i) ref[2 * i + 0] = ref[2 * i + 1] = data1[offset + i];
internal::pstore(data2, internal::ploaddup<Packet>(data1 + offset));
VERIFY(test::areApprox(ref, data2, PacketSize) && "ploaddup");
}
}
if(PacketSize>2)
{
if (PacketSize > 2) {
// apply different offsets to check that ploadquad is robust to unaligned inputs
for(int offset=0;offset<4;++offset)
{
for (int offset = 0; offset < 4; ++offset) {
for (int i = 0; i < PacketSize / 4; ++i)
ref[4 * i + 0] = ref[4 * i + 1] = ref[4 * i + 2] = ref[4 * i + 3] = data1[offset + i];
internal::pstore(data2, internal::ploadquad<Packet>(data1 + offset));
@ -314,28 +483,24 @@ template<typename Scalar,typename Packet> void packetmath()
}
ref[0] = Scalar(0);
for (int i=0; i<PacketSize; ++i)
ref[0] += data1[i];
for (int i = 0; i < PacketSize; ++i) ref[0] += data1[i];
VERIFY(test::isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
if(PacketSize==8 && internal::unpacket_traits<typename internal::unpacket_traits<Packet>::half>::size ==4) // so far, predux_half_downto4 is only required in such a case
if (PacketSize == 8 && internal::unpacket_traits<typename internal::unpacket_traits<Packet>::half>::size ==
4) // so far, predux_half_downto4 is only required in such a case
{
int HalfPacketSize = PacketSize > 4 ? PacketSize / 2 : PacketSize;
for (int i=0; i<HalfPacketSize; ++i)
ref[i] = Scalar(0);
for (int i=0; i<PacketSize; ++i)
ref[i%HalfPacketSize] += data1[i];
for (int i = 0; i < HalfPacketSize; ++i) ref[i] = Scalar(0);
for (int i = 0; i < PacketSize; ++i) ref[i % HalfPacketSize] += data1[i];
internal::pstore(data2, internal::predux_half_dowto4(internal::pload<Packet>(data1)));
VERIFY(test::areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4");
}
ref[0] = Scalar(1);
for (int i=0; i<PacketSize; ++i)
ref[0] = REF_MUL(ref[0], data1[i]);
for (int i = 0; i < PacketSize; ++i) ref[0] = REF_MUL(ref[0], data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul");
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[PacketSize-i-1];
for (int i = 0; i < PacketSize; ++i) ref[i] = data1[PacketSize - i - 1];
internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1)));
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::preverse");
@ -351,7 +516,6 @@ template<typename Scalar,typename Packet> void packetmath()
}
}
if (PacketTraits::HasBlend) {
Packet thenPacket = internal::pload<Packet>(data1);
Packet elsePacket = internal::pload<Packet>(data2);
@ -386,8 +550,7 @@ template<typename Scalar,typename Packet> void packetmath()
CHECK_CWISE1_IF(PacketTraits::HasSqrt, numext::sqrt, internal::psqrt);
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>();
}
CHECK_CWISE1(internal::pzero, internal::pzero);
@ -399,10 +562,8 @@ template<typename Scalar,typename Packet> void packetmath()
packetmath_pcast_ops<Scalar, Packet>();
}
template<typename Scalar,typename Packet> void packetmath_real()
{
template <typename Scalar, typename Packet>
void packetmath_real() {
typedef internal::packet_traits<Scalar> PacketTraits;
const int PacketSize = internal::unpacket_traits<Packet>::size;
@ -411,20 +572,17 @@ template<typename Scalar,typename Packet> void packetmath_real()
EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4];
EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4];
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>(0, 1) * std::pow(Scalar(10), internal::random<Scalar>(-6, 6));
data2[i] = internal::random<Scalar>(0, 1) * std::pow(Scalar(10), internal::random<Scalar>(-6, 6));
}
if(internal::random<float>(0,1)<0.1f)
data1[internal::random<int>(0, PacketSize)] = 0;
if (internal::random<float>(0, 1) < 0.1f) data1[internal::random<int>(0, PacketSize)] = 0;
CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog);
CHECK_CWISE1_IF(PacketTraits::HasRsqrt, Scalar(1) / std::sqrt, internal::prsqrt);
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>(-1, 1) * std::pow(Scalar(10), internal::random<Scalar>(-3, 3));
data2[i] = internal::random<Scalar>(-1, 1) * std::pow(Scalar(10), internal::random<Scalar>(-3, 3));
}
@ -438,37 +596,32 @@ template<typename Scalar,typename Packet> void packetmath_real()
CHECK_CWISE1_IF(PacketTraits::HasRint, numext::rint, internal::print);
// See bug 1785.
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = -1.5 + i;
data2[i] = -1.5 + i;
}
CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround);
CHECK_CWISE1_IF(PacketTraits::HasRint, numext::rint, internal::print);
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>(-1, 1);
data2[i] = internal::random<Scalar>(-1, 1);
}
CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin);
CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos);
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>(-87, 88);
data2[i] = internal::random<Scalar>(-87, 88);
}
CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp);
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>(-1, 1) * std::pow(Scalar(10), internal::random<Scalar>(-6, 6));
data2[i] = internal::random<Scalar>(-1, 1) * std::pow(Scalar(10), internal::random<Scalar>(-6, 6));
}
data1[0] = 1e-20;
CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh);
if(PacketTraits::HasExp && PacketSize>=2)
{
if (PacketTraits::HasExp && PacketSize >= 2) {
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
data1[1] = std::numeric_limits<Scalar>::epsilon();
test::packet_helper<PacketTraits::HasExp, Packet> h;
@ -505,8 +658,7 @@ template<typename Scalar,typename Packet> void packetmath_real()
if (PacketTraits::HasExp) {
internal::scalar_logistic_op<Scalar> logistic;
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>(-20, 20);
}
@ -529,12 +681,10 @@ template<typename Scalar,typename Packet> void packetmath_real()
CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1);
#endif
if(PacketSize>=2)
{
if (PacketSize >= 2) {
data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
data1[1] = std::numeric_limits<Scalar>::epsilon();
if(PacketTraits::HasLog)
{
if (PacketTraits::HasLog) {
test::packet_helper<PacketTraits::HasLog, Packet> h;
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isnan)(data2[0]));
@ -574,8 +724,7 @@ template<typename Scalar,typename Packet> void packetmath_real()
VERIFY((numext::isnan)(data2[0]));
VERIFY((numext::isnan)(data2[1]));
}
if(PacketTraits::HasSqrt)
{
if (PacketTraits::HasSqrt) {
test::packet_helper<PacketTraits::HasSqrt, Packet> h;
data1[0] = Scalar(-1.0f);
data1[1] = -std::numeric_limits<Scalar>::denorm_min();
@ -583,13 +732,10 @@ template<typename Scalar,typename Packet> void packetmath_real()
VERIFY((numext::isnan)(data2[0]));
VERIFY((numext::isnan)(data2[1]));
}
if(PacketTraits::HasCos)
{
if (PacketTraits::HasCos) {
test::packet_helper<PacketTraits::HasCos, Packet> h;
for(Scalar k = 1; k<Scalar(10000)/std::numeric_limits<Scalar>::epsilon(); k*=2)
{
for(int k1=0;k1<=1; ++k1)
{
for (Scalar k = 1; k < Scalar(10000) / std::numeric_limits<Scalar>::epsilon(); k *= 2) {
for (int k1 = 0; k1 <= 1; ++k1) {
data1[0] = (2 * k + k1) * Scalar(EIGEN_PI) / 2 * internal::random<Scalar>(0.8, 1.2);
data1[1] = (2 * k + 2 + k1) * Scalar(EIGEN_PI) / 2 * internal::random<Scalar>(0.8, 1.2);
h.store(data2, internal::pcos(h.load(data1)));
@ -629,8 +775,8 @@ template<typename Scalar,typename Packet> void packetmath_real()
}
}
template<typename Scalar,typename Packet> void packetmath_notcomplex()
{
template <typename Scalar, typename Packet>
void packetmath_notcomplex() {
typedef internal::packet_traits<Scalar> PacketTraits;
const int PacketSize = internal::unpacket_traits<Packet>::size;
@ -641,8 +787,7 @@ template<typename Scalar,typename Packet> void packetmath_notcomplex()
Array<Scalar, Dynamic, 1>::Map(data1, PacketSize * 4).setRandom();
ref[0] = data1[0];
for (int i=0; i<PacketSize; ++i)
ref[0] = (std::min)(ref[0],data1[i]);
for (int i = 0; i < PacketSize; ++i) ref[0] = (std::min)(ref[0], data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min");
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin);
@ -654,12 +799,10 @@ template<typename Scalar,typename Packet> void packetmath_notcomplex()
CHECK_CWISE2_IF(PacketTraits::HasAbsDiff, REF_ABS_DIFF, internal::pabsdiff);
ref[0] = data1[0];
for (int i=0; i<PacketSize; ++i)
ref[0] = (std::max)(ref[0],data1[i]);
for (int i = 0; i < PacketSize; ++i) ref[0] = (std::max)(ref[0], data1[i]);
VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max");
for (int i=0; i<PacketSize; ++i)
ref[i] = data1[0]+Scalar(i);
for (int i = 0; i < PacketSize; ++i) ref[i] = data1[0] + Scalar(i);
internal::pstore(data2, internal::plset<Packet>(data1[0]));
VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::plset");
@ -678,8 +821,7 @@ template<typename Scalar,typename Packet> void packetmath_notcomplex()
// predux_any
for (unsigned int i = 0; i < PacketSize * sizeof(Scalar); ++i) data1_bits[i] = 0x0;
VERIFY((!internal::predux_any(internal::pload<Packet>(data1))) && "internal::predux_any(0000)");
for(int k=0; k<PacketSize; ++k)
{
for (int k = 0; k < PacketSize; ++k) {
for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0xff;
VERIFY(internal::predux_any(internal::pload<Packet>(data1)) && "internal::predux_any(0101)");
for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0x00;
@ -687,8 +829,8 @@ template<typename Scalar,typename Packet> void packetmath_notcomplex()
}
}
template<typename Scalar,typename Packet,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval)
{
template <typename Scalar, typename Packet, bool ConjLhs, bool ConjRhs>
void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) {
const int PacketSize = internal::unpacket_traits<Packet>::size;
internal::conj_if<ConjLhs> cj0;
@ -696,26 +838,25 @@ template<typename Scalar,typename Packet,bool ConjLhs,bool ConjRhs> void test_co
internal::conj_helper<Scalar, Scalar, ConjLhs, ConjRhs> cj;
internal::conj_helper<Packet, Packet, ConjLhs, ConjRhs> pcj;
for(int i=0;i<PacketSize;++i)
{
for (int i = 0; i < PacketSize; ++i) {
ref[i] = cj0(data1[i]) * cj1(data2[i]);
VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i], data2[i])) && "conj_helper pmul");
}
internal::pstore(pval, pcj.pmul(internal::pload<Packet>(data1), internal::pload<Packet>(data2)));
VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmul");
for(int i=0;i<PacketSize;++i)
{
for (int i = 0; i < PacketSize; ++i) {
Scalar tmp = ref[i];
ref[i] += cj0(data1[i]) * cj1(data2[i]);
VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i], data2[i], tmp)) && "conj_helper pmadd");
}
internal::pstore(pval,pcj.pmadd(internal::pload<Packet>(data1),internal::pload<Packet>(data2),internal::pload<Packet>(pval)));
internal::pstore(
pval, pcj.pmadd(internal::pload<Packet>(data1), internal::pload<Packet>(data2), internal::pload<Packet>(pval)));
VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmadd");
}
template<typename Scalar,typename Packet> void packetmath_complex()
{
template <typename Scalar, typename Packet>
void packetmath_complex() {
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = PacketSize * 4;
@ -724,8 +865,7 @@ template<typename Scalar,typename Packet> void packetmath_complex()
EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4];
EIGEN_ALIGN_MAX Scalar pval[PacketSize * 4];
for (int i=0; i<size; ++i)
{
for (int i = 0; i < size; ++i) {
data1[i] = internal::random<Scalar>() * Scalar(1e2);
data2[i] = internal::random<Scalar>() * Scalar(1e2);
}
@ -736,15 +876,14 @@ template<typename Scalar,typename Packet> void packetmath_complex()
test_conj_helper<Scalar, Packet, true, true>(data1, data2, ref, pval);
{
for(int i=0;i<PacketSize;++i)
ref[i] = Scalar(std::imag(data1[i]),std::real(data1[i]));
for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(std::imag(data1[i]), std::real(data1[i]));
internal::pstore(pval, internal::pcplxflip(internal::pload<Packet>(data1)));
VERIFY(test::areApprox(ref, pval, PacketSize) && "pcplxflip");
}
}
template<typename Scalar,typename Packet> void packetmath_scatter_gather()
{
template <typename Scalar, typename Packet>
void packetmath_scatter_gather() {
typedef typename NumTraits<Scalar>::Real RealScalar;
const int PacketSize = internal::unpacket_traits<Packet>::size;
EIGEN_ALIGN_MAX Scalar data1[PacketSize];
@ -762,11 +901,9 @@ template<typename Scalar,typename Packet> void packetmath_scatter_gather()
for (int i = 0; i < PacketSize * 20; ++i) {
if ((i % stride) == 0 && i < stride * PacketSize) {
VERIFY(
test::isApproxAbs(buffer[i], data1[i/stride], refvalue) && "pscatter");
VERIFY(test::isApproxAbs(buffer[i], data1[i / stride], refvalue) && "pscatter");
} else {
VERIFY(
test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter");
VERIFY(test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter");
}
}
@ -811,15 +948,12 @@ struct runall<Scalar,PacketType,true,false> { // i.e. complex
}
};
}
}
} // namespace test
} // namespace Eigen
EIGEN_DECLARE_TEST(packetmath)
{
EIGEN_DECLARE_TEST(packetmath) {
g_first_pass = true;
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(test::runner<float>::run());
CALL_SUBTEST_2(test::runner<double>::run());
CALL_SUBTEST_3(test::runner<int8_t>::run());