mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-25 15:53:19 +08:00
Fix rank-1 update for self-adjoint packed matrices.
This commit is contained in:
parent
65caa40a3d
commit
04f315d692
@ -19,8 +19,8 @@ set(EigenBlas_SRCS ${EigenBlas_SRCS}
|
||||
complexdots.f
|
||||
srotm.f srotmg.f drotm.f drotmg.f
|
||||
lsame.f dspmv.f ssbmv.f
|
||||
chbmv.f chpr.f sspmv.f
|
||||
zhbmv.f zhpr.f chpmv.f dsbmv.f
|
||||
chbmv.f sspmv.f
|
||||
zhbmv.f chpmv.f dsbmv.f
|
||||
zhpmv.f
|
||||
dtbmv.f stbmv.f ctbmv.f ztbmv.f
|
||||
)
|
||||
|
@ -14,12 +14,6 @@ namespace internal {
|
||||
|
||||
/* Optimized matrix += alpha * uv'
|
||||
* The matrix is in packed form.
|
||||
*
|
||||
* FIXME I always fail tests for complex self-adjoint matrices.
|
||||
*
|
||||
* ******* FATAL ERROR - PARAMETER NUMBER 6 WAS CHANGED INCORRECTLY *******
|
||||
* ******* xHPR FAILED ON CALL NUMBER:
|
||||
* 2: xHPR ('U', 1, 0.0, X, 1, AP)
|
||||
*/
|
||||
template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
|
||||
struct selfadjoint_packed_rank1_update;
|
||||
@ -27,20 +21,20 @@ struct selfadjoint_packed_rank1_update;
|
||||
template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
|
||||
struct selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo,ConjLhs,ConjRhs>
|
||||
{
|
||||
static void run(Index size, Scalar* mat, const Scalar* vec, Scalar alpha)
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha)
|
||||
{
|
||||
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
|
||||
typedef typename conj_expr_if<ConjLhs,OtherMap>::type ConjRhsType;
|
||||
conj_if<ConjRhs> cj;
|
||||
Index offset = 0;
|
||||
|
||||
for (Index i=0; i<size; ++i)
|
||||
{
|
||||
Map<Matrix<Scalar,Dynamic,1> >(mat+offset, UpLo==Lower ? size-i : (i+1))
|
||||
Map<Matrix<Scalar,Dynamic,1> >(mat, UpLo==Lower ? size-i : (i+1))
|
||||
+= alpha * cj(vec[i]) * ConjRhsType(OtherMap(vec+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)));
|
||||
//FIXME This should be handled outside.
|
||||
mat[offset+(UpLo==Lower ? 0 : i)] = real(mat[offset+(UpLo==Lower ? 0 : i)]);
|
||||
offset += UpLo==Lower ? size-i : (i+1);
|
||||
mat[UpLo==Lower ? 0 : i] = real(mat[UpLo==Lower ? 0 : i]);
|
||||
mat += UpLo==Lower ? size-i : (i+1);
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -48,7 +42,8 @@ struct selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo,ConjLhs,ConjRh
|
||||
template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
|
||||
struct selfadjoint_packed_rank1_update<Scalar,Index,RowMajor,UpLo,ConjLhs,ConjRhs>
|
||||
{
|
||||
static void run(Index size, Scalar* mat, const Scalar* vec, Scalar alpha)
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha)
|
||||
{
|
||||
selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo==Lower?Upper:Lower,ConjRhs,ConjLhs>::run(size,mat,vec,alpha);
|
||||
}
|
||||
|
220
blas/chpr.f
220
blas/chpr.f
@ -1,220 +0,0 @@
|
||||
SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
|
||||
* .. Scalar Arguments ..
|
||||
REAL ALPHA
|
||||
INTEGER INCX,N
|
||||
CHARACTER UPLO
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
COMPLEX AP(*),X(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* CHPR performs the hermitian rank 1 operation
|
||||
*
|
||||
* A := alpha*x*conjg( x' ) + A,
|
||||
*
|
||||
* where alpha is a real scalar, x is an n element vector and A is an
|
||||
* n by n hermitian matrix, supplied in packed form.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* UPLO - CHARACTER*1.
|
||||
* On entry, UPLO specifies whether the upper or lower
|
||||
* triangular part of the matrix A is supplied in the packed
|
||||
* array AP as follows:
|
||||
*
|
||||
* UPLO = 'U' or 'u' The upper triangular part of A is
|
||||
* supplied in AP.
|
||||
*
|
||||
* UPLO = 'L' or 'l' The lower triangular part of A is
|
||||
* supplied in AP.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the order of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - REAL .
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - COMPLEX array of dimension at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
||||
* Before entry, the incremented array X must contain the n
|
||||
* element vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* AP - COMPLEX array of DIMENSION at least
|
||||
* ( ( n*( n + 1 ) )/2 ).
|
||||
* Before entry with UPLO = 'U' or 'u', the array AP must
|
||||
* contain the upper triangular part of the hermitian matrix
|
||||
* packed sequentially, column by column, so that AP( 1 )
|
||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
||||
* and a( 2, 2 ) respectively, and so on. On exit, the array
|
||||
* AP is overwritten by the upper triangular part of the
|
||||
* updated matrix.
|
||||
* Before entry with UPLO = 'L' or 'l', the array AP must
|
||||
* contain the lower triangular part of the hermitian matrix
|
||||
* packed sequentially, column by column, so that AP( 1 )
|
||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
||||
* and a( 3, 1 ) respectively, and so on. On exit, the array
|
||||
* AP is overwritten by the lower triangular part of the
|
||||
* updated matrix.
|
||||
* Note that the imaginary parts of the diagonal elements need
|
||||
* not be set, they are assumed to be zero, and on exit they
|
||||
* are set to zero.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
COMPLEX ZERO
|
||||
PARAMETER (ZERO= (0.0E+0,0.0E+0))
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
COMPLEX TEMP
|
||||
INTEGER I,INFO,IX,J,JX,K,KK,KX
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC CONJG,REAL
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 5
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('CHPR ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
|
||||
*
|
||||
* Set the start point in X if the increment is not unity.
|
||||
*
|
||||
IF (INCX.LE.0) THEN
|
||||
KX = 1 - (N-1)*INCX
|
||||
ELSE IF (INCX.NE.1) THEN
|
||||
KX = 1
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of the array AP
|
||||
* are accessed sequentially with one pass through AP.
|
||||
*
|
||||
KK = 1
|
||||
IF (LSAME(UPLO,'U')) THEN
|
||||
*
|
||||
* Form A when upper triangle is stored in AP.
|
||||
*
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 20 J = 1,N
|
||||
IF (X(J).NE.ZERO) THEN
|
||||
TEMP = ALPHA*CONJG(X(J))
|
||||
K = KK
|
||||
DO 10 I = 1,J - 1
|
||||
AP(K) = AP(K) + X(I)*TEMP
|
||||
K = K + 1
|
||||
10 CONTINUE
|
||||
AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(J)*TEMP)
|
||||
ELSE
|
||||
AP(KK+J-1) = REAL(AP(KK+J-1))
|
||||
END IF
|
||||
KK = KK + J
|
||||
20 CONTINUE
|
||||
ELSE
|
||||
JX = KX
|
||||
DO 40 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*CONJG(X(JX))
|
||||
IX = KX
|
||||
DO 30 K = KK,KK + J - 2
|
||||
AP(K) = AP(K) + X(IX)*TEMP
|
||||
IX = IX + INCX
|
||||
30 CONTINUE
|
||||
AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP)
|
||||
ELSE
|
||||
AP(KK+J-1) = REAL(AP(KK+J-1))
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
KK = KK + J
|
||||
40 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form A when lower triangle is stored in AP.
|
||||
*
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(J).NE.ZERO) THEN
|
||||
TEMP = ALPHA*CONJG(X(J))
|
||||
AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J))
|
||||
K = KK + 1
|
||||
DO 50 I = J + 1,N
|
||||
AP(K) = AP(K) + X(I)*TEMP
|
||||
K = K + 1
|
||||
50 CONTINUE
|
||||
ELSE
|
||||
AP(KK) = REAL(AP(KK))
|
||||
END IF
|
||||
KK = KK + N - J + 1
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
JX = KX
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*CONJG(X(JX))
|
||||
AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX))
|
||||
IX = JX
|
||||
DO 70 K = KK + 1,KK + N - J
|
||||
IX = IX + INCX
|
||||
AP(K) = AP(K) + X(IX)*TEMP
|
||||
70 CONTINUE
|
||||
ELSE
|
||||
AP(KK) = REAL(AP(KK))
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
KK = KK + N - J + 1
|
||||
80 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of CHPR .
|
||||
*
|
||||
END
|
202
blas/dspr.f
202
blas/dspr.f
@ -1,202 +0,0 @@
|
||||
SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP)
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION ALPHA
|
||||
INTEGER INCX,N
|
||||
CHARACTER UPLO
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION AP(*),X(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* DSPR performs the symmetric rank 1 operation
|
||||
*
|
||||
* A := alpha*x*x' + A,
|
||||
*
|
||||
* where alpha is a real scalar, x is an n element vector and A is an
|
||||
* n by n symmetric matrix, supplied in packed form.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* UPLO - CHARACTER*1.
|
||||
* On entry, UPLO specifies whether the upper or lower
|
||||
* triangular part of the matrix A is supplied in the packed
|
||||
* array AP as follows:
|
||||
*
|
||||
* UPLO = 'U' or 'u' The upper triangular part of A is
|
||||
* supplied in AP.
|
||||
*
|
||||
* UPLO = 'L' or 'l' The lower triangular part of A is
|
||||
* supplied in AP.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the order of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - DOUBLE PRECISION.
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - DOUBLE PRECISION array of dimension at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
||||
* Before entry, the incremented array X must contain the n
|
||||
* element vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* AP - DOUBLE PRECISION array of DIMENSION at least
|
||||
* ( ( n*( n + 1 ) )/2 ).
|
||||
* Before entry with UPLO = 'U' or 'u', the array AP must
|
||||
* contain the upper triangular part of the symmetric matrix
|
||||
* packed sequentially, column by column, so that AP( 1 )
|
||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
||||
* and a( 2, 2 ) respectively, and so on. On exit, the array
|
||||
* AP is overwritten by the upper triangular part of the
|
||||
* updated matrix.
|
||||
* Before entry with UPLO = 'L' or 'l', the array AP must
|
||||
* contain the lower triangular part of the symmetric matrix
|
||||
* packed sequentially, column by column, so that AP( 1 )
|
||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
||||
* and a( 3, 1 ) respectively, and so on. On exit, the array
|
||||
* AP is overwritten by the lower triangular part of the
|
||||
* updated matrix.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ZERO
|
||||
PARAMETER (ZERO=0.0D+0)
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION TEMP
|
||||
INTEGER I,INFO,IX,J,JX,K,KK,KX
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 5
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('DSPR ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
|
||||
*
|
||||
* Set the start point in X if the increment is not unity.
|
||||
*
|
||||
IF (INCX.LE.0) THEN
|
||||
KX = 1 - (N-1)*INCX
|
||||
ELSE IF (INCX.NE.1) THEN
|
||||
KX = 1
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of the array AP
|
||||
* are accessed sequentially with one pass through AP.
|
||||
*
|
||||
KK = 1
|
||||
IF (LSAME(UPLO,'U')) THEN
|
||||
*
|
||||
* Form A when upper triangle is stored in AP.
|
||||
*
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 20 J = 1,N
|
||||
IF (X(J).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(J)
|
||||
K = KK
|
||||
DO 10 I = 1,J
|
||||
AP(K) = AP(K) + X(I)*TEMP
|
||||
K = K + 1
|
||||
10 CONTINUE
|
||||
END IF
|
||||
KK = KK + J
|
||||
20 CONTINUE
|
||||
ELSE
|
||||
JX = KX
|
||||
DO 40 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IX = KX
|
||||
DO 30 K = KK,KK + J - 1
|
||||
AP(K) = AP(K) + X(IX)*TEMP
|
||||
IX = IX + INCX
|
||||
30 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
KK = KK + J
|
||||
40 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form A when lower triangle is stored in AP.
|
||||
*
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(J).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(J)
|
||||
K = KK
|
||||
DO 50 I = J,N
|
||||
AP(K) = AP(K) + X(I)*TEMP
|
||||
K = K + 1
|
||||
50 CONTINUE
|
||||
END IF
|
||||
KK = KK + N - J + 1
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
JX = KX
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IX = JX
|
||||
DO 70 K = KK,KK + N - J
|
||||
AP(K) = AP(K) + X(IX)*TEMP
|
||||
IX = IX + INCX
|
||||
70 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
KK = KK + N - J + 1
|
||||
80 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of DSPR .
|
||||
*
|
||||
END
|
@ -108,10 +108,49 @@ int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa
|
||||
* where alpha is a real scalar, x is an n element vector and A is an
|
||||
* n by n hermitian matrix, supplied in packed form.
|
||||
*/
|
||||
// int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap)
|
||||
// {
|
||||
// return 1;
|
||||
// }
|
||||
int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap)
|
||||
{
|
||||
typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar);
|
||||
static functype func[2];
|
||||
|
||||
static bool init = false;
|
||||
if(!init)
|
||||
{
|
||||
for(int k=0; k<2; ++k)
|
||||
func[k] = 0;
|
||||
|
||||
func[UP] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run);
|
||||
func[LO] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run);
|
||||
|
||||
init = true;
|
||||
}
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* ap = reinterpret_cast<Scalar*>(pap);
|
||||
RealScalar alpha = *palpha;
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6);
|
||||
|
||||
if(alpha==Scalar(0))
|
||||
return 1;
|
||||
|
||||
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
||||
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, ap, x_cpy, alpha);
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** ZHPR2 performs the hermitian rank 2 operation
|
||||
*
|
||||
|
202
blas/sspr.f
202
blas/sspr.f
@ -1,202 +0,0 @@
|
||||
SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP)
|
||||
* .. Scalar Arguments ..
|
||||
REAL ALPHA
|
||||
INTEGER INCX,N
|
||||
CHARACTER UPLO
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
REAL AP(*),X(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* SSPR performs the symmetric rank 1 operation
|
||||
*
|
||||
* A := alpha*x*x' + A,
|
||||
*
|
||||
* where alpha is a real scalar, x is an n element vector and A is an
|
||||
* n by n symmetric matrix, supplied in packed form.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* UPLO - CHARACTER*1.
|
||||
* On entry, UPLO specifies whether the upper or lower
|
||||
* triangular part of the matrix A is supplied in the packed
|
||||
* array AP as follows:
|
||||
*
|
||||
* UPLO = 'U' or 'u' The upper triangular part of A is
|
||||
* supplied in AP.
|
||||
*
|
||||
* UPLO = 'L' or 'l' The lower triangular part of A is
|
||||
* supplied in AP.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the order of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - REAL .
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - REAL array of dimension at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
||||
* Before entry, the incremented array X must contain the n
|
||||
* element vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* AP - REAL array of DIMENSION at least
|
||||
* ( ( n*( n + 1 ) )/2 ).
|
||||
* Before entry with UPLO = 'U' or 'u', the array AP must
|
||||
* contain the upper triangular part of the symmetric matrix
|
||||
* packed sequentially, column by column, so that AP( 1 )
|
||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
||||
* and a( 2, 2 ) respectively, and so on. On exit, the array
|
||||
* AP is overwritten by the upper triangular part of the
|
||||
* updated matrix.
|
||||
* Before entry with UPLO = 'L' or 'l', the array AP must
|
||||
* contain the lower triangular part of the symmetric matrix
|
||||
* packed sequentially, column by column, so that AP( 1 )
|
||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
||||
* and a( 3, 1 ) respectively, and so on. On exit, the array
|
||||
* AP is overwritten by the lower triangular part of the
|
||||
* updated matrix.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
REAL ZERO
|
||||
PARAMETER (ZERO=0.0E+0)
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
REAL TEMP
|
||||
INTEGER I,INFO,IX,J,JX,K,KK,KX
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 5
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('SSPR ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
|
||||
*
|
||||
* Set the start point in X if the increment is not unity.
|
||||
*
|
||||
IF (INCX.LE.0) THEN
|
||||
KX = 1 - (N-1)*INCX
|
||||
ELSE IF (INCX.NE.1) THEN
|
||||
KX = 1
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of the array AP
|
||||
* are accessed sequentially with one pass through AP.
|
||||
*
|
||||
KK = 1
|
||||
IF (LSAME(UPLO,'U')) THEN
|
||||
*
|
||||
* Form A when upper triangle is stored in AP.
|
||||
*
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 20 J = 1,N
|
||||
IF (X(J).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(J)
|
||||
K = KK
|
||||
DO 10 I = 1,J
|
||||
AP(K) = AP(K) + X(I)*TEMP
|
||||
K = K + 1
|
||||
10 CONTINUE
|
||||
END IF
|
||||
KK = KK + J
|
||||
20 CONTINUE
|
||||
ELSE
|
||||
JX = KX
|
||||
DO 40 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IX = KX
|
||||
DO 30 K = KK,KK + J - 1
|
||||
AP(K) = AP(K) + X(IX)*TEMP
|
||||
IX = IX + INCX
|
||||
30 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
KK = KK + J
|
||||
40 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form A when lower triangle is stored in AP.
|
||||
*
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(J).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(J)
|
||||
K = KK
|
||||
DO 50 I = J,N
|
||||
AP(K) = AP(K) + X(I)*TEMP
|
||||
K = K + 1
|
||||
50 CONTINUE
|
||||
END IF
|
||||
KK = KK + N - J + 1
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
JX = KX
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*X(JX)
|
||||
IX = JX
|
||||
DO 70 K = KK,KK + N - J
|
||||
AP(K) = AP(K) + X(IX)*TEMP
|
||||
IX = IX + INCX
|
||||
70 CONTINUE
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
KK = KK + N - J + 1
|
||||
80 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of SSPR .
|
||||
*
|
||||
END
|
220
blas/zhpr.f
220
blas/zhpr.f
@ -1,220 +0,0 @@
|
||||
SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP)
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION ALPHA
|
||||
INTEGER INCX,N
|
||||
CHARACTER UPLO
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE COMPLEX AP(*),X(*)
|
||||
* ..
|
||||
*
|
||||
* Purpose
|
||||
* =======
|
||||
*
|
||||
* ZHPR performs the hermitian rank 1 operation
|
||||
*
|
||||
* A := alpha*x*conjg( x' ) + A,
|
||||
*
|
||||
* where alpha is a real scalar, x is an n element vector and A is an
|
||||
* n by n hermitian matrix, supplied in packed form.
|
||||
*
|
||||
* Arguments
|
||||
* ==========
|
||||
*
|
||||
* UPLO - CHARACTER*1.
|
||||
* On entry, UPLO specifies whether the upper or lower
|
||||
* triangular part of the matrix A is supplied in the packed
|
||||
* array AP as follows:
|
||||
*
|
||||
* UPLO = 'U' or 'u' The upper triangular part of A is
|
||||
* supplied in AP.
|
||||
*
|
||||
* UPLO = 'L' or 'l' The lower triangular part of A is
|
||||
* supplied in AP.
|
||||
*
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* N - INTEGER.
|
||||
* On entry, N specifies the order of the matrix A.
|
||||
* N must be at least zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* ALPHA - DOUBLE PRECISION.
|
||||
* On entry, ALPHA specifies the scalar alpha.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* X - COMPLEX*16 array of dimension at least
|
||||
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
||||
* Before entry, the incremented array X must contain the n
|
||||
* element vector x.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* INCX - INTEGER.
|
||||
* On entry, INCX specifies the increment for the elements of
|
||||
* X. INCX must not be zero.
|
||||
* Unchanged on exit.
|
||||
*
|
||||
* AP - COMPLEX*16 array of DIMENSION at least
|
||||
* ( ( n*( n + 1 ) )/2 ).
|
||||
* Before entry with UPLO = 'U' or 'u', the array AP must
|
||||
* contain the upper triangular part of the hermitian matrix
|
||||
* packed sequentially, column by column, so that AP( 1 )
|
||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
||||
* and a( 2, 2 ) respectively, and so on. On exit, the array
|
||||
* AP is overwritten by the upper triangular part of the
|
||||
* updated matrix.
|
||||
* Before entry with UPLO = 'L' or 'l', the array AP must
|
||||
* contain the lower triangular part of the hermitian matrix
|
||||
* packed sequentially, column by column, so that AP( 1 )
|
||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
||||
* and a( 3, 1 ) respectively, and so on. On exit, the array
|
||||
* AP is overwritten by the lower triangular part of the
|
||||
* updated matrix.
|
||||
* Note that the imaginary parts of the diagonal elements need
|
||||
* not be set, they are assumed to be zero, and on exit they
|
||||
* are set to zero.
|
||||
*
|
||||
* Further Details
|
||||
* ===============
|
||||
*
|
||||
* Level 2 Blas routine.
|
||||
*
|
||||
* -- Written on 22-October-1986.
|
||||
* Jack Dongarra, Argonne National Lab.
|
||||
* Jeremy Du Croz, Nag Central Office.
|
||||
* Sven Hammarling, Nag Central Office.
|
||||
* Richard Hanson, Sandia National Labs.
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE COMPLEX ZERO
|
||||
PARAMETER (ZERO= (0.0D+0,0.0D+0))
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
DOUBLE COMPLEX TEMP
|
||||
INTEGER I,INFO,IX,J,JX,K,KK,KX
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME
|
||||
EXTERNAL LSAME
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC DBLE,DCONJG
|
||||
* ..
|
||||
*
|
||||
* Test the input parameters.
|
||||
*
|
||||
INFO = 0
|
||||
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
||||
INFO = 1
|
||||
ELSE IF (N.LT.0) THEN
|
||||
INFO = 2
|
||||
ELSE IF (INCX.EQ.0) THEN
|
||||
INFO = 5
|
||||
END IF
|
||||
IF (INFO.NE.0) THEN
|
||||
CALL XERBLA('ZHPR ',INFO)
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible.
|
||||
*
|
||||
IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN
|
||||
*
|
||||
* Set the start point in X if the increment is not unity.
|
||||
*
|
||||
IF (INCX.LE.0) THEN
|
||||
KX = 1 - (N-1)*INCX
|
||||
ELSE IF (INCX.NE.1) THEN
|
||||
KX = 1
|
||||
END IF
|
||||
*
|
||||
* Start the operations. In this version the elements of the array AP
|
||||
* are accessed sequentially with one pass through AP.
|
||||
*
|
||||
KK = 1
|
||||
IF (LSAME(UPLO,'U')) THEN
|
||||
*
|
||||
* Form A when upper triangle is stored in AP.
|
||||
*
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 20 J = 1,N
|
||||
IF (X(J).NE.ZERO) THEN
|
||||
TEMP = ALPHA*DCONJG(X(J))
|
||||
K = KK
|
||||
DO 10 I = 1,J - 1
|
||||
AP(K) = AP(K) + X(I)*TEMP
|
||||
K = K + 1
|
||||
10 CONTINUE
|
||||
AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(J)*TEMP)
|
||||
ELSE
|
||||
AP(KK+J-1) = DBLE(AP(KK+J-1))
|
||||
END IF
|
||||
KK = KK + J
|
||||
20 CONTINUE
|
||||
ELSE
|
||||
JX = KX
|
||||
DO 40 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*DCONJG(X(JX))
|
||||
IX = KX
|
||||
DO 30 K = KK,KK + J - 2
|
||||
AP(K) = AP(K) + X(IX)*TEMP
|
||||
IX = IX + INCX
|
||||
30 CONTINUE
|
||||
AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(JX)*TEMP)
|
||||
ELSE
|
||||
AP(KK+J-1) = DBLE(AP(KK+J-1))
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
KK = KK + J
|
||||
40 CONTINUE
|
||||
END IF
|
||||
ELSE
|
||||
*
|
||||
* Form A when lower triangle is stored in AP.
|
||||
*
|
||||
IF (INCX.EQ.1) THEN
|
||||
DO 60 J = 1,N
|
||||
IF (X(J).NE.ZERO) THEN
|
||||
TEMP = ALPHA*DCONJG(X(J))
|
||||
AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(J))
|
||||
K = KK + 1
|
||||
DO 50 I = J + 1,N
|
||||
AP(K) = AP(K) + X(I)*TEMP
|
||||
K = K + 1
|
||||
50 CONTINUE
|
||||
ELSE
|
||||
AP(KK) = DBLE(AP(KK))
|
||||
END IF
|
||||
KK = KK + N - J + 1
|
||||
60 CONTINUE
|
||||
ELSE
|
||||
JX = KX
|
||||
DO 80 J = 1,N
|
||||
IF (X(JX).NE.ZERO) THEN
|
||||
TEMP = ALPHA*DCONJG(X(JX))
|
||||
AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(JX))
|
||||
IX = JX
|
||||
DO 70 K = KK + 1,KK + N - J
|
||||
IX = IX + INCX
|
||||
AP(K) = AP(K) + X(IX)*TEMP
|
||||
70 CONTINUE
|
||||
ELSE
|
||||
AP(KK) = DBLE(AP(KK))
|
||||
END IF
|
||||
JX = JX + INCX
|
||||
KK = KK + N - J + 1
|
||||
80 CONTINUE
|
||||
END IF
|
||||
END IF
|
||||
*
|
||||
RETURN
|
||||
*
|
||||
* End of ZHPR .
|
||||
*
|
||||
END
|
Loading…
x
Reference in New Issue
Block a user