mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-29 07:14:12 +08:00
More docs, and minor code fixes
This commit is contained in:
parent
e30133e439
commit
06206482d9
@ -4,6 +4,7 @@ set(Eigen_HEADERS
|
||||
ArpackSupport
|
||||
AutoDiff
|
||||
BVH
|
||||
EulerAngles
|
||||
FFT
|
||||
IterativeSolvers
|
||||
KroneckerProduct
|
||||
@ -26,4 +27,4 @@ install(FILES
|
||||
)
|
||||
|
||||
add_subdirectory(src)
|
||||
add_subdirectory(CXX11)
|
||||
add_subdirectory(CXX11)
|
||||
|
@ -22,6 +22,10 @@ namespace Eigen {
|
||||
* \defgroup EulerAngles_Module EulerAngles module
|
||||
* \brief This module provides generic euler angles rotation.
|
||||
*
|
||||
* Euler angles are a way to represent 3D rotation.
|
||||
*
|
||||
* !TODO! More about the purpose of this module and examples.
|
||||
*
|
||||
* See EulerAngles for more information.
|
||||
*
|
||||
* \code
|
||||
|
@ -1,6 +1,6 @@
|
||||
FILE(GLOB Eigen_IterativeSolvers_SRCS "*.h")
|
||||
FILE(GLOB Eigen_EulerAngles_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_IterativeSolvers_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/IterativeSolvers COMPONENT Devel
|
||||
${Eigen_EulerAngles_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/EulerAngles COMPONENT Devel
|
||||
)
|
||||
|
@ -19,11 +19,60 @@ namespace Eigen
|
||||
|
||||
/** \class EulerAngles
|
||||
*
|
||||
* \brief Represents a rotation in a 3 dimensional space as three Euler angles
|
||||
* \brief Represents a rotation in a 3 dimensional space as three Euler angles.
|
||||
*
|
||||
* \sa _Scalar the scalar type, i.e., the type of the angles.
|
||||
* Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.
|
||||
*
|
||||
* Here is how intrinsic Euler angles works:
|
||||
* - first, rotate the axes system over the alpha axis in angle alpha
|
||||
* - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta
|
||||
* - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
|
||||
*
|
||||
* \sa _System the EulerSystem to use, which represents the axes of rotation.
|
||||
* \note This class support only intrinsic Euler angles for simplicity,
|
||||
* see EulerSystem how to easily overcome it for extrinsic systems.
|
||||
*
|
||||
* ### Rotation representation and conversions ###
|
||||
*
|
||||
* It has been proved(see Wikipedia link below) that every rotation can be represented
|
||||
* by Euler angles, but there is no singular representation (e.g. unlike rotation matrices).
|
||||
* Therefore, you can convert from Eigen rotation and to them
|
||||
* (including rotation matrices, which is not called "rotations" by Eigen design).
|
||||
*
|
||||
* Euler angles usually used for:
|
||||
* - convenient human representation of rotation, especially in interactive GUI.
|
||||
* - gimbal systems and robotics
|
||||
* - efficient encoding(i.e. 3 floats only) of rotation for network protocols.
|
||||
*
|
||||
* However, Euler angles are slow comparing to quaternion or matrices,
|
||||
* because their unnatural math definition, although it's simple for human.
|
||||
* To overcome this, this class provide easy movement from the math friendly representation
|
||||
* to the human friendly representation, and vise-versa.
|
||||
*
|
||||
* All the user need to do is a safe simple C++ type conversion,
|
||||
* and this class take care for the math.
|
||||
* Additionally, some axes related computation is done in compile time.
|
||||
*
|
||||
* ### Convenient user typedefs ###
|
||||
*
|
||||
* Convenient typedefs for EulerAngles exist for float and double scalar,
|
||||
* in a form of EulerAngles{A}{B}{C}{scalar},
|
||||
* e.g. EulerAnglesXYZd, EulerAnglesZYZf.
|
||||
*
|
||||
* !TODO! Add examples
|
||||
*
|
||||
* Only for positive axes{+x,+y,+z} euler systems are have convenient typedef.
|
||||
* If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with
|
||||
* a word that represent what you need, e.g. EulerAnglesUTM (!TODO! make it more clear with example code).
|
||||
*
|
||||
* ### Additional reading ###
|
||||
*
|
||||
* If you're want to get more idea about how Euler system work in Eigen see EulerSystem.
|
||||
*
|
||||
* More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
|
||||
*
|
||||
* \tparam _Scalar the scalar type, i.e., the type of the angles.
|
||||
*
|
||||
* \tparam _System the EulerSystem to use, which represents the axes of rotation.
|
||||
*/
|
||||
template <typename _Scalar, class _System>
|
||||
class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
|
||||
@ -62,17 +111,18 @@ namespace Eigen
|
||||
public:
|
||||
/** Default constructor without initialization. */
|
||||
EulerAngles() {}
|
||||
/** Constructs and initialize euler angles(\p alpha, \p beta, \p gamma). */
|
||||
EulerAngles(Scalar alpha, Scalar beta, Scalar gamma) : m_angles(alpha, beta, gamma) {}
|
||||
/** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */
|
||||
EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
|
||||
m_angles(alpha, beta, gamma) {}
|
||||
|
||||
/** Constructs and initialize euler angles from a 3x3 rotation matrix \p m.
|
||||
/** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m.
|
||||
*
|
||||
* \note All angles will be in the range [-PI, PI].
|
||||
*/
|
||||
template<typename Derived>
|
||||
EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
|
||||
|
||||
/** Constructs and initialize euler angles from a 3x3 rotation matrix \p m,
|
||||
/** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
|
||||
* with options to choose for each angle the requested range.
|
||||
*
|
||||
* If possitive range is true, then the specified angle will be in the range [0, +2*PI].
|
||||
@ -93,14 +143,16 @@ namespace Eigen
|
||||
System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
|
||||
}
|
||||
|
||||
/** Constructs and initialize euler angles from a rotation \p rot.
|
||||
/** Constructs and initialize Euler angles from a rotation \p rot.
|
||||
*
|
||||
* \note All angles will be in the range [-PI, PI].
|
||||
* \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
|
||||
* If rot is an EulerAngles, expected EulerAngles range is undefined.
|
||||
* (Use other functions here for enforcing range if this effect is desired)
|
||||
*/
|
||||
template<typename Derived>
|
||||
EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; }
|
||||
|
||||
/** Constructs and initialize euler angles from a rotation \p rot,
|
||||
/** Constructs and initialize Euler angles from a rotation \p rot,
|
||||
* with options to choose for each angle the requested range.
|
||||
*
|
||||
* If possitive range is true, then the specified angle will be in the range [0, +2*PI].
|
||||
@ -141,7 +193,7 @@ namespace Eigen
|
||||
/** \returns A read-write reference to the angle of the third angle. */
|
||||
Scalar& gamma() { return m_angles[2]; }
|
||||
|
||||
/** \returns The euler angles rotation inverse (which is as same as the negative),
|
||||
/** \returns The Euler angles rotation inverse (which is as same as the negative),
|
||||
* (-alpha, -beta, -gamma).
|
||||
*/
|
||||
EulerAngles inverse() const
|
||||
@ -151,7 +203,7 @@ namespace Eigen
|
||||
return res;
|
||||
}
|
||||
|
||||
/** \returns The euler angles rotation negative (which is as same as the inverse),
|
||||
/** \returns The Euler angles rotation negative (which is as same as the inverse),
|
||||
* (-alpha, -beta, -gamma).
|
||||
*/
|
||||
EulerAngles operator -() const
|
||||
@ -159,7 +211,7 @@ namespace Eigen
|
||||
return inverse();
|
||||
}
|
||||
|
||||
/** Constructs and initialize euler angles from a 3x3 rotation matrix \p m,
|
||||
/** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
|
||||
* with options to choose for each angle the requested range (__only in compile time__).
|
||||
*
|
||||
* If possitive range is true, then the specified angle will be in the range [0, +2*PI].
|
||||
@ -182,7 +234,7 @@ namespace Eigen
|
||||
return e;
|
||||
}
|
||||
|
||||
/** Constructs and initialize euler angles from a rotation \p rot,
|
||||
/** Constructs and initialize Euler angles from a rotation \p rot,
|
||||
* with options to choose for each angle the requested range (__only in compile time__).
|
||||
*
|
||||
* If possitive range is true, then the specified angle will be in the range [0, +2*PI].
|
||||
@ -241,40 +293,34 @@ namespace Eigen
|
||||
return static_cast<QuaternionType>(*this).toRotationMatrix();
|
||||
}
|
||||
|
||||
/** \returns an equivalent quaternion */
|
||||
QuaternionType toQuaternion() const
|
||||
/** Convert the Euler angles to quaternion. */
|
||||
operator QuaternionType() const
|
||||
{
|
||||
return
|
||||
AngleAxisType(alpha(), AlphaAxisVector()) *
|
||||
AngleAxisType(beta(), BetaAxisVector()) *
|
||||
AngleAxisType(beta(), BetaAxisVector()) *
|
||||
AngleAxisType(gamma(), GammaAxisVector());
|
||||
}
|
||||
|
||||
/** Convert the euler angles to quaternion. */
|
||||
operator QuaternionType() const
|
||||
{
|
||||
return toQuaternion();
|
||||
}
|
||||
};
|
||||
|
||||
#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(SYSTEM, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
typedef EulerAngles<SCALAR_TYPE, SYSTEM> SYSTEM##SCALAR_POSTFIX;
|
||||
#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerSystem##AXES##SCALAR_POSTFIX;
|
||||
|
||||
#define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemXYZ, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemXYX, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemXZY, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemXZX, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
\
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemYZX, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemYZY, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemYXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemYXY, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
\
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemZXY, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemZYX, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(EulerSystemZYZ, SCALAR_TYPE, SCALAR_POSTFIX)
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \
|
||||
EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX)
|
||||
|
||||
EIGEN_EULER_ANGLES_TYPEDEFS(float, f)
|
||||
EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
|
||||
|
@ -38,27 +38,107 @@ namespace Eigen
|
||||
};
|
||||
}
|
||||
|
||||
/** \brief Representation of a fixed signed rotation axis for EulerAngles.
|
||||
*
|
||||
* Values here represent:
|
||||
* - The axis of the rotation: X, Y or Z.
|
||||
* - The sign (i.e. direction of the rotation along the axis): possitive(+) or negative(-)
|
||||
*
|
||||
* Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
|
||||
*
|
||||
* For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
|
||||
*
|
||||
* !TODO! Add examples
|
||||
*/
|
||||
enum EulerAxis
|
||||
{
|
||||
EULER_X = 1,
|
||||
EULER_Y = 2,
|
||||
EULER_Z = 3
|
||||
EULER_X = 1, /*!< the X axis */
|
||||
EULER_Y = 2, /*!< the Y axis */
|
||||
EULER_Z = 3 /*!< the Z axis */
|
||||
};
|
||||
|
||||
|
||||
/** \class EulerSystem
|
||||
*
|
||||
* \brief Represents a fixed Euler rotation system.
|
||||
*
|
||||
* This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
|
||||
*
|
||||
* You can use this class to get two things:
|
||||
* - Build an Euler system, and then pass it as a template parameter to EulerAngles.
|
||||
* - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
|
||||
*
|
||||
* Euler rotation is a set of three rotation on fixed axes. (see EulerAngles)
|
||||
* This meta-class store constantly those signed axes. (see EulerAxis)
|
||||
*
|
||||
* ### Types of Euler systems ###
|
||||
*
|
||||
* All and only valid 3 dimension Euler rotation over standard
|
||||
* signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
|
||||
* - all axes X, Y, Z in each valid order (see below what order is valid)
|
||||
* - rotation over the axis is supported both over the positive and negative directions.
|
||||
* - both tait bryan and classic Euler angles (i.e. the opposite).
|
||||
*
|
||||
* Since EulerSystem support both positive and negative directions,
|
||||
* you may call this rotation distinction in other names:
|
||||
* - right handed or left handed
|
||||
* - counterclockwise or clockwise
|
||||
*
|
||||
* Notice all axed combination are valid, and would trigger an assertion !TODO!.
|
||||
* Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
|
||||
* This yield two and only two classes:
|
||||
* - tait bryan - all unsigned axes are distinct, e.g. {X,Y,Z}
|
||||
* - proper/classic Euler angles - The first and the third unsigned axes is equal,
|
||||
* and the second is different, e.g. {X,Y,X}
|
||||
*
|
||||
* !TODO! Add some example code.
|
||||
*
|
||||
* ### Intrinsic vs extrinsic Euler systems ###
|
||||
*
|
||||
* Only intrinsic Euler systems are supported for simplicity.
|
||||
* If you want to use extrinsic Euler systems,
|
||||
* just use the equal intrinsic opposite order for axes and angles.
|
||||
* I.E axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
|
||||
* !TODO! Make it more clear and add some example code.
|
||||
*
|
||||
* ### Convenient user typedefs ###
|
||||
*
|
||||
* Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
|
||||
* in a form of EulerSystem{A}{B}{C}, e.g. EulerSystemXYZd.
|
||||
* !TODO! Make it more clear
|
||||
*
|
||||
* ### Additional reading ###
|
||||
*
|
||||
* More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
|
||||
*
|
||||
* \tparam _AlphaAxis the first fixed EulerAxis
|
||||
*
|
||||
* \tparam _AlphaAxis the second fixed EulerAxis
|
||||
*
|
||||
* \tparam _AlphaAxis the third fixed EulerAxis
|
||||
*/
|
||||
template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
|
||||
class EulerSystem
|
||||
{
|
||||
public:
|
||||
// It's defined this way and not as enum, because I think
|
||||
// that enum is not guerantee to support negative numbers
|
||||
|
||||
/** The first rotation axis */
|
||||
static const int AlphaAxis = _AlphaAxis;
|
||||
|
||||
/** The second rotation axis */
|
||||
static const int BetaAxis = _BetaAxis;
|
||||
|
||||
/** The third rotation axis */
|
||||
static const int GammaAxis = _GammaAxis;
|
||||
|
||||
enum
|
||||
{
|
||||
/** The first rotation axis unsigned */
|
||||
AlphaAxisAbs = internal::Abs<AlphaAxis>::value,
|
||||
/** The second rotation axis unsigned */
|
||||
BetaAxisAbs = internal::Abs<BetaAxis>::value,
|
||||
/** The third rotation axis unsigned */
|
||||
GammaAxisAbs = internal::Abs<GammaAxis>::value,
|
||||
|
||||
IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0,
|
||||
@ -81,7 +161,7 @@ namespace Eigen
|
||||
|
||||
enum
|
||||
{
|
||||
// I, J, K are the pivot indexes permutation for the rotation matrix, that match this euler system.
|
||||
// I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
|
||||
// They are used in this class converters.
|
||||
// They are always different from each other, and their possible values are: 0, 1, or 2.
|
||||
I = AlphaAxisAbs - 1,
|
||||
@ -150,8 +230,6 @@ namespace Eigen
|
||||
Scalar c1 = cos(res[0]);
|
||||
res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
template<typename Scalar>
|
||||
static void CalcEulerAngles(
|
||||
@ -204,6 +282,9 @@ namespace Eigen
|
||||
if (PositiveRangeGamma && (res.gamma() < 0))
|
||||
res.gamma() += Scalar(2 * EIGEN_PI);
|
||||
}
|
||||
|
||||
template <typename _Scalar, class _System>
|
||||
friend class Eigen::EulerAngles;
|
||||
};
|
||||
|
||||
#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
|
||||
|
Loading…
x
Reference in New Issue
Block a user