mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 19:29:02 +08:00
first working version. Still no preconditioning
This commit is contained in:
parent
d0ee31aea6
commit
064f3eff95
273
Eigen/src/IterativeLinearSolvers/MINRES.h
Normal file
273
Eigen/src/IterativeLinearSolvers/MINRES.h
Normal file
@ -0,0 +1,273 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
|
||||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
|
||||
#ifndef EIGEN_MINRES_H_
|
||||
#define EIGEN_MINRES_H_
|
||||
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal Low-level MINRES algorithm
|
||||
* \param mat The matrix A
|
||||
* \param rhs The right hand side vector b
|
||||
* \param x On input and initial solution, on output the computed solution.
|
||||
* \param precond A preconditioner being able to efficiently solve for an
|
||||
* approximation of Ax=b (regardless of b)
|
||||
* \param iters On input the max number of iteration, on output the number of performed iterations.
|
||||
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
|
||||
*/
|
||||
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||||
EIGEN_DONT_INLINE
|
||||
void minres(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
const Preconditioner& precond, int& iters,
|
||||
typename Dest::RealScalar& tol_error)
|
||||
{
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
// initialize
|
||||
const int maxIters(iters); // initialize maxIters to iters
|
||||
const int N(mat.cols()); // the size of the matrix
|
||||
const RealScalar threshold(tol_error); // convergence threshold
|
||||
VectorType v(VectorType::Zero(N));
|
||||
VectorType v_hat(rhs-mat*x);
|
||||
RealScalar beta(v_hat.norm());
|
||||
RealScalar c(1.0); // the cosine of the Givens rotation
|
||||
RealScalar c_old(1.0);
|
||||
RealScalar s(0.0); // the sine of the Givens rotation
|
||||
RealScalar s_old(0.0); // the sine of the Givens rotation
|
||||
VectorType w(VectorType::Zero(N));
|
||||
VectorType w_old(w);
|
||||
RealScalar eta(beta);
|
||||
RealScalar norm_rMR=beta;
|
||||
const RealScalar norm_r0(beta);
|
||||
|
||||
int n = 0;
|
||||
while ( n < maxIters ){
|
||||
|
||||
|
||||
// Lanczos
|
||||
VectorType v_old(v);
|
||||
v=v_hat/beta;
|
||||
VectorType Av(mat*v);
|
||||
RealScalar alpha(v.transpose()*Av);
|
||||
v_hat=Av-alpha*v-beta*v_old;
|
||||
RealScalar beta_old(beta);
|
||||
beta=v_hat.norm();
|
||||
|
||||
// QR
|
||||
RealScalar c_oold(c_old);
|
||||
c_old=c;
|
||||
RealScalar s_oold(s_old);
|
||||
s_old=s;
|
||||
RealScalar r1_hat=c_old *alpha-c_oold*s_old *beta_old;
|
||||
RealScalar r1 =std::pow(std::pow(r1_hat,2)+std::pow(beta,2),0.5);
|
||||
RealScalar r2 =s_old *alpha+c_oold*c_old*beta_old;
|
||||
RealScalar r3 =s_oold*beta_old;
|
||||
|
||||
// Givens rotation
|
||||
c=r1_hat/r1;
|
||||
s=beta/r1;
|
||||
|
||||
// update
|
||||
VectorType w_oold(w_old);
|
||||
w_old=w;
|
||||
w=(v-r3*w_oold-r2*w_old) /r1;
|
||||
x += c*eta*w;
|
||||
norm_rMR *= std::fabs(s);
|
||||
eta=-s*eta;
|
||||
//if(norm_rMR/norm_r0 < threshold){
|
||||
if ( (mat*x-rhs).norm()/rhs.norm() < threshold){
|
||||
break;
|
||||
}
|
||||
n++;
|
||||
}
|
||||
tol_error = (mat*x-rhs).norm()/rhs.norm(); // return error DOES mat*x NEED TO BE RECOMPUTED???
|
||||
iters = n; // return number of iterations
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template< typename _MatrixType, int _UpLo=Lower,
|
||||
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||
class MINRES;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
||||
struct traits<MINRES<_MatrixType,_UpLo,_Preconditioner> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A minimal residual solver for sparse symmetric problems
|
||||
*
|
||||
* This class allows to solve for A.x = b sparse linear problems using the MINRES algorithm
|
||||
* of Paige and Saunders (1975). The sparse matrix A must be symmetric (possibly indefinite).
|
||||
* The vectors x and b can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
||||
*
|
||||
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||||
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
||||
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
||||
*
|
||||
* This class can be used as the direct solver classes. Here is a typical usage example:
|
||||
* \code
|
||||
* int n = 10000;
|
||||
* VectorXd x(n), b(n);
|
||||
* SparseMatrix<double> A(n,n);
|
||||
* // fill A and b
|
||||
* MINRES<SparseMatrix<double> > mr;
|
||||
* mr.compute(A);
|
||||
* x = mr.solve(b);
|
||||
* std::cout << "#iterations: " << mr.iterations() << std::endl;
|
||||
* std::cout << "estimated error: " << mr.error() << std::endl;
|
||||
* // update b, and solve again
|
||||
* x = mr.solve(b);
|
||||
* \endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method. Here is a step by
|
||||
* step execution example starting with a random guess and printing the evolution
|
||||
* of the estimated error:
|
||||
* * \code
|
||||
* x = VectorXd::Random(n);
|
||||
* mr.setMaxIterations(1);
|
||||
* int i = 0;
|
||||
* do {
|
||||
* x = mr.solveWithGuess(b,x);
|
||||
* std::cout << i << " : " << mr.error() << std::endl;
|
||||
* ++i;
|
||||
* } while (mr.info()!=Success && i<100);
|
||||
* \endcode
|
||||
* Note that such a step by step excution is slightly slower.
|
||||
*
|
||||
* \sa class ConjugateGradient, BiCGSTAB, SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
template< typename _MatrixType, int _UpLo, typename _Preconditioner>
|
||||
class MINRES : public IterativeSolverBase<MINRES<_MatrixType,_UpLo,_Preconditioner> >
|
||||
{
|
||||
|
||||
typedef IterativeSolverBase<MINRES> Base;
|
||||
using Base::mp_matrix;
|
||||
using Base::m_error;
|
||||
using Base::m_iterations;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
|
||||
enum {UpLo = _UpLo};
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor. */
|
||||
MINRES() : Base() {}
|
||||
|
||||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||
*
|
||||
* This constructor is a shortcut for the default constructor followed
|
||||
* by a call to compute().
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
MINRES(const MatrixType& A) : Base(A) {}
|
||||
|
||||
/** Destructor. */
|
||||
~MINRES(){}
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
||||
* \a x0 as an initial solution.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs,typename Guess>
|
||||
inline const internal::solve_retval_with_guess<MINRES, Rhs, Guess>
|
||||
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "MINRES is not initialized.");
|
||||
eigen_assert(Base::rows()==b.rows()
|
||||
&& "MINRES::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval_with_guess
|
||||
<MINRES, Rhs, Guess>(*this, b.derived(), x0);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solveWithGuess(const Rhs& b, Dest& x) const
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
for(int j=0; j<b.cols(); ++j)
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
internal::minres(mp_matrix->template selfadjointView<UpLo>(), b.col(j), xj,
|
||||
Base::m_preconditioner, m_iterations, m_error);
|
||||
}
|
||||
|
||||
m_isInitialized = true;
|
||||
m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x.setOnes();
|
||||
_solveWithGuess(b,x);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
|
||||
struct solve_retval<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
|
||||
: solve_retval_base<MINRES<_MatrixType,_UpLo,_Preconditioner>, Rhs>
|
||||
{
|
||||
typedef MINRES<_MatrixType,_UpLo,_Preconditioner> Dec;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dec()._solve(rhs(),dst);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MINRES_H
|
||||
|
Loading…
x
Reference in New Issue
Block a user