Sparse module:

* several fixes (transpose, matrix product, etc...)
 * Added a basic cholesky factorization
 * Added a low level hybrid dense/sparse vector class
   to help writing code involving intensive read/write
   in a fixed vector. It is currently used to implement
   the matrix product itself as well as in the Cholesky
   factorization.
This commit is contained in:
Gael Guennebaud 2008-10-04 14:23:00 +00:00
parent 1fc503e3ce
commit 068ff3370d
8 changed files with 859 additions and 103 deletions

View File

@ -13,6 +13,7 @@ namespace Eigen {
#include "src/Sparse/SparseUtil.h"
#include "src/Sparse/SparseMatrixBase.h"
#include "src/Sparse/SparseArray.h"
#include "src/Sparse/AmbiVector.h"
#include "src/Sparse/SparseBlock.h"
#include "src/Sparse/SparseMatrix.h"
#include "src/Sparse/HashMatrix.h"
@ -21,6 +22,7 @@ namespace Eigen {
#include "src/Sparse/SparseSetter.h"
#include "src/Sparse/SparseProduct.h"
#include "src/Sparse/TriangularSolver.h"
#include "src/Sparse/BasicSparseCholesky.h"
} // namespace Eigen

View File

@ -59,7 +59,7 @@ template<typename MatrixType> class Cholesky
};
public:
Cholesky(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols())
{

View File

@ -0,0 +1,348 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_AMBIVECTOR_H
#define EIGEN_AMBIVECTOR_H
/** \internal
* Hybrid sparse/dense vector class designed for intensive read-write operations.
*
* See BasicSparseCholesky and SparseProduct for usage examples.
*/
template<typename _Scalar> class AmbiVector
{
public:
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
AmbiVector(int size)
: m_buffer(0), m_size(0), m_allocatedSize(0), m_mode(-1)
{
resize(size);
}
void init(RealScalar estimatedDensity);
void init(int mode);
void nonZeros() const;
/** Specifies a sub-vector to work on */
void setBounds(int start, int end) { m_start = start; m_end = end; }
void setZero();
void restart();
Scalar& coeffRef(int i);
Scalar coeff(int i);
class Iterator;
~AmbiVector() { delete[] m_buffer; }
void resize(int size)
{
if (m_allocatedSize < size)
reallocate(size);
m_size = size;
}
int size() const { return m_size; }
protected:
void reallocate(int size)
{
Scalar* newBuffer = new Scalar[size/* *4 + (size * sizeof(int)*2)/sizeof(Scalar)+1 */];
int copySize = std::min(size, m_size);
memcpy(newBuffer, m_buffer, copySize * sizeof(Scalar));
delete[] m_buffer;
m_buffer = newBuffer;
m_allocatedSize = size;
m_size = size;
m_start = 0;
m_end = m_size;
}
protected:
// element type of the linked list
struct ListEl
{
int next;
int index;
Scalar value;
};
// used to store data in both mode
Scalar* m_buffer;
int m_size;
int m_start;
int m_end;
int m_allocatedSize;
int m_mode;
// linked list mode
int m_llStart;
int m_llCurrent;
int m_llSize;
private:
AmbiVector(const AmbiVector&);
};
/** \returns the number of non zeros in the current sub vector */
template<typename Scalar>
void AmbiVector<Scalar>::nonZeros() const
{
if (m_mode==IsSparse)
return m_llSize;
else
return m_end - m_start;
}
template<typename Scalar>
void AmbiVector<Scalar>::init(RealScalar estimatedDensity)
{
if (m_mode = estimatedDensity>0.1)
init(IsDense);
else
init(IsSparse);
}
template<typename Scalar>
void AmbiVector<Scalar>::init(int mode)
{
m_mode = mode;
if (m_mode==IsSparse)
{
m_llSize = 0;
m_llStart = -1;
}
}
/** Must be called whenever we might perform a write access
* with an index smaller than the previous one.
*
* Don't worry, this function is extremely cheap.
*/
template<typename Scalar>
void AmbiVector<Scalar>::restart()
{
m_llCurrent = m_llStart;
}
/** Set all coefficients of current subvector to zero */
template<typename Scalar>
void AmbiVector<Scalar>::setZero()
{
if (m_mode==IsDense)
{
for (int i=m_start; i<m_end; ++i)
m_buffer[i] = Scalar(0);
}
else
{
ei_assert(m_mode==IsSparse);
m_llSize = 0;
m_llStart = -1;
}
}
template<typename Scalar>
Scalar& AmbiVector<Scalar>::coeffRef(int i)
{
if (m_mode==IsDense)
return m_buffer[i];
else
{
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
// TODO factorize the following code to reduce code generation
ei_assert(m_mode==IsSparse);
if (m_llSize==0)
{
// this is the first element
m_llStart = 0;
m_llCurrent = 0;
m_llSize++;
llElements[0].value = Scalar(0);
llElements[0].index = i;
llElements[0].next = -1;
return llElements[0].value;
}
else if (i<llElements[m_llStart].index)
{
// this is going to be the new first element of the list
ListEl& el = llElements[m_llSize];
el.value = Scalar(0);
el.index = i;
el.next = m_llStart;
m_llStart = m_llSize;
m_llSize++;
m_llCurrent = m_llStart;
return el.value;
}
else
{
int nextel = llElements[m_llCurrent].next;
ei_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
while (nextel >= 0 && llElements[nextel].index<=i)
{
m_llCurrent = nextel;
nextel = llElements[nextel].next;
}
if (llElements[m_llCurrent].index==i)
{
// the coefficient already exists and we found it !
return llElements[m_llCurrent].value;
}
else
{
// let's insert a new coefficient
ListEl& el = llElements[m_llSize];
el.value = Scalar(0);
el.index = i;
el.next = llElements[m_llCurrent].next;
llElements[m_llCurrent].next = m_llSize;
m_llSize++;
return el.value;
}
}
}
}
template<typename Scalar>
Scalar AmbiVector<Scalar>::coeff(int i)
{
if (m_mode==IsDense)
return m_buffer[i];
else
{
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
ei_assert(m_mode==IsSparse);
if ((m_llSize==0) || (i<llElements[m_llStart].index))
{
return Scalar(0);
}
else
{
int elid = m_llStart;
while (elid >= 0 && llElements[elid].index<i)
elid = llElements[elid].next;
if (llElements[elid].index==i)
return llElements[m_llCurrent].value;
else
return Scalar(0);
}
}
}
/** Iterator over the nonzero coefficients */
template<typename _Scalar>
class AmbiVector<_Scalar>::Iterator
{
public:
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
/** Default constructor
* \param vec the vector on which we iterate
* \param nonZeroReferenceValue reference value used to prune zero coefficients.
* In practice, the coefficient are compared to \a nonZeroReferenceValue * precision<Scalar>().
*/
Iterator(const AmbiVector& vec, RealScalar nonZeroReferenceValue = RealScalar(0.1)) : m_vector(vec)
{
m_epsilon = nonZeroReferenceValue * precision<Scalar>();
m_isDense = m_vector.m_mode==IsDense;
if (m_isDense)
{
m_cachedIndex = m_vector.m_start-1;
++(*this);
}
else
{
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
m_currentEl = m_vector.m_llStart;
while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)<m_epsilon)
m_currentEl = llElements[m_currentEl].next;
if (m_currentEl<0)
{
m_cachedIndex = -1;
}
else
{
m_cachedIndex = llElements[m_currentEl].index;
m_cachedValue = llElements[m_currentEl].value;
}
}
}
int index() const { return m_cachedIndex; }
Scalar value() const { return m_cachedValue; }
operator bool() const { return m_cachedIndex>=0; }
Iterator& operator++()
{
if (m_isDense)
{
do {
m_cachedIndex++;
} while (m_cachedIndex<m_vector.m_end && ei_abs(m_vector.m_buffer[m_cachedIndex])<m_epsilon);
if (m_cachedIndex<m_vector.m_end)
m_cachedValue = m_vector.m_buffer[m_cachedIndex];
else
m_cachedIndex=-1;
}
else
{
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
do {
m_currentEl = llElements[m_currentEl].next;
} while (m_currentEl>=0 && ei_abs(llElements[m_currentEl].value)<m_epsilon);
if (m_currentEl<0)
{
m_cachedIndex = -1;
}
else
{
m_cachedIndex = llElements[m_currentEl].index;
m_cachedValue = llElements[m_currentEl].value;
}
}
return *this;
}
protected:
const AmbiVector& m_vector; // the target vector
int m_currentEl; // the current element in sparse/linked-list mode
RealScalar m_epsilon; // epsilon used to prune zero coefficients
int m_cachedIndex; // current coordinate
Scalar m_cachedValue; // current value
bool m_isDense; // mode of the vector
};
#endif // EIGEN_AMBIVECTOR_H

View File

@ -0,0 +1,440 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_BASICSPARSECHOLESKY_H
#define EIGEN_BASICSPARSECHOLESKY_H
/** \ingroup Sparse_Module
*
* \class BasicSparseCholesky
*
* \brief Standard Cholesky decomposition of a matrix and associated features
*
* \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition
*
* \sa class Cholesky, class CholeskyWithoutSquareRoot
*/
template<typename MatrixType> class BasicSparseCholesky
{
private:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
enum {
PacketSize = ei_packet_traits<Scalar>::size,
AlignmentMask = int(PacketSize)-1
};
public:
BasicSparseCholesky(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols())
{
compute(matrix);
}
inline const MatrixType& matrixL(void) const { return m_matrix; }
/** \returns true if the matrix is positive definite */
inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
// template<typename Derived>
// typename Derived::Eval solve(const MatrixBase<Derived> &b) const;
void compute(const MatrixType& matrix);
protected:
/** \internal
* Used to compute and store L
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
bool m_isPositiveDefinite;
struct ListEl
{
int next;
int index;
Scalar value;
};
};
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
*/
#ifdef IGEN_BASICSPARSECHOLESKY_H
template<typename MatrixType>
void BasicSparseCholesky<MatrixType>::compute(const MatrixType& a)
{
assert(a.rows()==a.cols());
const int size = a.rows();
m_matrix.resize(size, size);
const RealScalar eps = ei_sqrt(precision<Scalar>());
// allocate a temporary vector for accumulations
AmbiVector<Scalar> tempVector(size);
// TODO estimate the number of nnz
m_matrix.startFill(a.nonZeros()*2);
for (int j = 0; j < size; ++j)
{
// std::cout << j << "\n";
Scalar x = ei_real(a.coeff(j,j));
int endSize = size-j-1;
// TODO estimate the number of non zero entries
// float ratioLhs = float(lhs.nonZeros())/float(lhs.rows()*lhs.cols());
// float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
// float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
// let's do a more accurate determination of the nnz ratio for the current column j of res
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
// float ratioColRes = ratioRes;
// if (ratioColRes>0.1)
// tempVector.init(IsSparse);
tempVector.init(IsDense);
tempVector.setBounds(j+1,size);
tempVector.setZero();
// init with current matrix a
{
typename MatrixType::InnerIterator it(a,j);
++it; // skip diagonal element
for (; it; ++it)
tempVector.coeffRef(it.index()) = it.value();
}
for (int k=0; k<j+1; ++k)
{
typename MatrixType::InnerIterator it(m_matrix, k);
while (it && it.index()<j)
++it;
if (it && it.index()==j)
{
Scalar y = it.value();
x -= ei_abs2(y);
++it; // skip j-th element, and process remaing column coefficients
tempVector.restart();
for (; it; ++it)
{
tempVector.coeffRef(it.index()) -= it.value() * y;
}
}
}
// copy the temporary vector to the respective m_matrix.col()
// while scaling the result by 1/real(x)
RealScalar rx = ei_sqrt(ei_real(x));
m_matrix.fill(j,j) = rx;
Scalar y = Scalar(1)/rx;
for (typename AmbiVector<Scalar>::Iterator it(tempVector); it; ++it)
{
m_matrix.fill(it.index(), j) = it.value() * y;
}
}
m_matrix.endFill();
}
#else
template<typename MatrixType>
void BasicSparseCholesky<MatrixType>::compute(const MatrixType& a)
{
assert(a.rows()==a.cols());
const int size = a.rows();
m_matrix.resize(size, size);
const RealScalar eps = ei_sqrt(precision<Scalar>());
// allocate a temporary buffer
Scalar* buffer = new Scalar[size*2];
m_matrix.startFill(a.nonZeros()*2);
// RealScalar x;
// x = ei_real(a.coeff(0,0));
// m_isPositiveDefinite = x > eps && ei_isMuchSmallerThan(ei_imag(a.coeff(0,0)), RealScalar(1));
// m_matrix.fill(0,0) = ei_sqrt(x);
// m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0));
for (int j = 0; j < size; ++j)
{
// std::cout << j << " " << std::flush;
// Scalar tmp = ei_real(a.coeff(j,j));
// if (j>0)
// tmp -= m_matrix.row(j).start(j).norm2();
// x = ei_real(tmp);
// std::cout << "x = " << x << "\n";
// if (x < eps || (!ei_isMuchSmallerThan(ei_imag(tmp), RealScalar(1))))
// {
// m_isPositiveDefinite = false;
// return;
// }
// m_matrix.fill(j,j) = x = ei_sqrt(x);
Scalar x = ei_real(a.coeff(j,j));
// if (j>0)
// x -= m_matrix.row(j).start(j).norm2();
// RealScalar rx = ei_sqrt(ei_real(x));
// m_matrix.fill(j,j) = rx;
int endSize = size-j-1;
/*if (endSize>0)*/ {
// Note that when all matrix columns have good alignment, then the following
// product is guaranteed to be optimal with respect to alignment.
// m_matrix.col(j).end(endSize) =
// (m_matrix.block(j+1, 0, endSize, j) * m_matrix.row(j).start(j).adjoint()).lazy();
// FIXME could use a.col instead of a.row
// m_matrix.col(j).end(endSize) = (a.row(j).end(endSize).adjoint()
// - m_matrix.col(j).end(endSize) ) / x;
// make sure to call innerSize/outerSize since we fake the storage order.
// estimate the number of non zero entries
// float ratioLhs = float(lhs.nonZeros())/float(lhs.rows()*lhs.cols());
// float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
// float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
// for (int j1=0; j1<cols; ++j1)
{
// let's do a more accurate determination of the nnz ratio for the current column j of res
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
// float ratioColRes = ratioRes;
// if (ratioColRes>0.1)
if (true)
{
// dense path, the scalar * columns products are accumulated into a dense column
Scalar* __restrict__ tmp = buffer;
// set to zero
for (int k=j+1; k<size; ++k)
tmp[k] = 0;
// init with current matrix a
{
typename MatrixType::InnerIterator it(a,j);
++it;
for (; it; ++it)
tmp[it.index()] = it.value();
}
for (int k=0; k<j+1; ++k)
{
// Scalar y = m_matrix.coeff(j,k);
// if (!ei_isMuchSmallerThan(ei_abs(y),Scalar(1)))
// {
typename MatrixType::InnerIterator it(m_matrix, k);
while (it && it.index()<j)
++it;
if (it && it.index()==j)
{
Scalar y = it.value();
x -= ei_abs2(y);
// if (!ei_isMuchSmallerThan(ei_abs(y),Scalar(0.1)))
{
++it;
for (; it; ++it)
{
tmp[it.index()] -= it.value() * y;
}
}
}
}
// copy the temporary to the respective m_matrix.col()
RealScalar rx = ei_sqrt(ei_real(x));
m_matrix.fill(j,j) = rx;
Scalar y = Scalar(1)/rx;
for (int k=j+1; k<size; ++k)
//if (tmp[k]!=0)
if (!ei_isMuchSmallerThan(ei_abs(tmp[k]),Scalar(0.01)))
m_matrix.fill(k, j) = tmp[k]*y;
}
else
{
ListEl* __restrict__ tmp = reinterpret_cast<ListEl*>(buffer);
// sparse path, the scalar * columns products are accumulated into a linked list
int tmp_size = 0;
int tmp_start = -1;
{
int tmp_el = tmp_start;
typename MatrixType::InnerIterator it(a,j);
if (it)
{
++it;
for (; it; ++it)
{
Scalar v = it.value();
int id = it.index();
if (tmp_size==0)
{
tmp_start = 0;
tmp_el = 0;
tmp_size++;
tmp[0].value = v;
tmp[0].index = id;
tmp[0].next = -1;
}
else if (id<tmp[tmp_start].index)
{
tmp[tmp_size].value = v;
tmp[tmp_size].index = id;
tmp[tmp_size].next = tmp_start;
tmp_start = tmp_size;
tmp_el = tmp_start;
tmp_size++;
}
else
{
int nextel = tmp[tmp_el].next;
while (nextel >= 0 && tmp[nextel].index<=id)
{
tmp_el = nextel;
nextel = tmp[nextel].next;
}
if (tmp[tmp_el].index==id)
{
tmp[tmp_el].value = v;
}
else
{
tmp[tmp_size].value = v;
tmp[tmp_size].index = id;
tmp[tmp_size].next = tmp[tmp_el].next;
tmp[tmp_el].next = tmp_size;
tmp_size++;
}
}
}
}
}
// for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
for (int k=0; k<j+1; ++k)
{
// Scalar y = m_matrix.coeff(j,k);
// if (!ei_isMuchSmallerThan(ei_abs(y),Scalar(1)))
// {
int tmp_el = tmp_start;
typename MatrixType::InnerIterator it(m_matrix, k);
while (it && it.index()<j)
++it;
if (it && it.index()==j)
{
Scalar y = it.value();
x -= ei_abs2(y);
for (; it; ++it)
{
Scalar v = -it.value() * y;
int id = it.index();
if (tmp_size==0)
{
// std::cout << "insert because size==0\n";
tmp_start = 0;
tmp_el = 0;
tmp_size++;
tmp[0].value = v;
tmp[0].index = id;
tmp[0].next = -1;
}
else if (id<tmp[tmp_start].index)
{
// std::cout << "insert because not in (0) " << id << " " << tmp[tmp_start].index << " " << tmp_start << "\n";
tmp[tmp_size].value = v;
tmp[tmp_size].index = id;
tmp[tmp_size].next = tmp_start;
tmp_start = tmp_size;
tmp_el = tmp_start;
tmp_size++;
}
else
{
int nextel = tmp[tmp_el].next;
while (nextel >= 0 && tmp[nextel].index<=id)
{
tmp_el = nextel;
nextel = tmp[nextel].next;
}
if (tmp[tmp_el].index==id)
{
tmp[tmp_el].value -= v;
}
else
{
// std::cout << "insert because not in (1)\n";
tmp[tmp_size].value = v;
tmp[tmp_size].index = id;
tmp[tmp_size].next = tmp[tmp_el].next;
tmp[tmp_el].next = tmp_size;
tmp_size++;
}
}
}
}
}
RealScalar rx = ei_sqrt(ei_real(x));
m_matrix.fill(j,j) = rx;
Scalar y = Scalar(1)/rx;
int k = tmp_start;
while (k>=0)
{
if (!ei_isMuchSmallerThan(ei_abs(tmp[k].value),Scalar(0.01)))
{
// std::cout << "fill " << tmp[k].index << "," << j << "\n";
m_matrix.fill(tmp[k].index, j) = tmp[k].value * y;
}
k = tmp[k].next;
}
}
}
}
}
m_matrix.endFill();
}
#endif
/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
* In other words, it returns \f$ A^{-1} b \f$ computing
* \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
* \param b the column vector \f$ b \f$, which can also be a matrix.
*
* Example: \include Cholesky_solve.cpp
* Output: \verbinclude Cholesky_solve.out
*
* \sa MatrixBase::cholesky(), CholeskyWithoutSquareRoot::solve()
*/
// template<typename MatrixType>
// template<typename Derived>
// typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b) const
// {
// const int size = m_matrix.rows();
// ei_assert(size==b.rows());
//
// return m_matrix.adjoint().template part<Upper>().solveTriangular(matrixL().solveTriangular(b));
// }
#endif // EIGEN_BASICSPARSECHOLESKY_H

View File

@ -149,6 +149,7 @@ class LinkedVectorMatrix
{
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
// std::cout << " ll fill " << outer << "," << inner << "\n";
if (m_ends[outer]==0)
{
m_data[outer] = m_ends[outer] = new VectorChunk();
@ -171,6 +172,29 @@ class LinkedVectorMatrix
inline void endFill() { }
void printDbg()
{
for (int j=0; j<m_data.size(); ++j)
{
VectorChunk* el = m_data[j];
while (el)
{
for (int i=0; i<el->size; ++i)
std::cout << j << "," << el->data[i].index << " = " << el->data[i].value << "\n";
el = el->next;
}
}
for (int j=0; j<m_data.size(); ++j)
{
InnerIterator it(*this,j);
while (it)
{
std::cout << j << "," << it.index() << " = " << it.value() << "\n";
++it;
}
}
}
~LinkedVectorMatrix()
{
clear();
@ -267,7 +291,16 @@ class LinkedVectorMatrix<Scalar,_Flags>::InnerIterator
: m_matrix(mat), m_el(mat.m_data[col]), m_it(0)
{}
InnerIterator& operator++() { if (m_it<m_el->size) m_it++; else {m_el = m_el->next; m_it=0;}; return *this; }
InnerIterator& operator++()
{
m_it++;
if (m_it>=m_el->size)
{
m_el = m_el->next;
m_it = 0;
}
return *this;
}
Scalar value() { return m_el->data[m_it].value; }

View File

@ -133,10 +133,10 @@ class SparseMatrix
{
const int outer = RowMajor ? row : col;
const int inner = RowMajor ? col : row;
// std::cout << " fill " << outer << "," << inner << "\n";
if (m_outerIndex[outer+1]==0)
{
int i=col;
int i = outer;
while (i>=0 && m_outerIndex[i]==0)
{
m_outerIndex[i] = m_data.size();
@ -204,6 +204,7 @@ class SparseMatrix
inline SparseMatrix& operator=(const SparseMatrix& other)
{
// std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n";
if (other.isRValue())
{
swap(other.const_cast_derived());
@ -221,6 +222,7 @@ class SparseMatrix
template<typename OtherDerived>
inline SparseMatrix& operator=(const MatrixBase<OtherDerived>& other)
{
// std::cout << "SparseMatrix& operator=(const MatrixBase<OtherDerived>& other)\n";
return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
}

View File

@ -51,6 +51,7 @@ class SparseMatrixBase : public MatrixBase<Derived>
inline Derived& operator=(const Derived& other)
{
// std::cout << "Derived& operator=(const Derived& other)\n";
if (other.isRValue())
derived().swap(other.const_cast_derived());
else
@ -61,7 +62,9 @@ class SparseMatrixBase : public MatrixBase<Derived>
template<typename OtherDerived>
inline Derived& operator=(const MatrixBase<OtherDerived>& other)
{
// std::cout << "Derived& operator=(const MatrixBase<OtherDerived>& other)\n";
const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
// std::cout << "eval transpose = " << transpose << "\n";
const int outerSize = other.outerSize();
typedef typename ei_meta_if<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::ret TempType;
TempType temp(other.rows(), other.cols());
@ -88,6 +91,8 @@ class SparseMatrixBase : public MatrixBase<Derived>
template<typename OtherDerived>
inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other)
{
// std::cout << typeid(OtherDerived).name() << "\n";
// std::cout << Flags << " " << OtherDerived::Flags << "\n";
const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
// std::cout << "eval transpose = " << transpose << "\n";
const int outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols();

View File

@ -41,22 +41,22 @@ struct ProductReturnType<Lhs,Rhs,SparseProduct>
// type of the temporary to perform the transpose op
typedef typename ei_meta_if<TransposeLhs,
SparseMatrix<Scalar,0>,
typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type>::ret LhsNested;
const typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type>::ret LhsNested;
typedef typename ei_meta_if<TransposeRhs,
SparseMatrix<Scalar,0>,
typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type>::ret RhsNested;
const typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type>::ret RhsNested;
typedef Product<typename ei_unconst<LhsNested>::type,
typename ei_unconst<RhsNested>::type, SparseProduct> Type;
typedef Product<LhsNested,
RhsNested, SparseProduct> Type;
};
template<typename LhsNested, typename RhsNested>
struct ei_traits<Product<LhsNested, RhsNested, SparseProduct> >
{
// clean the nested types:
typedef typename ei_unconst<typename ei_unref<LhsNested>::type>::type _LhsNested;
typedef typename ei_unconst<typename ei_unref<RhsNested>::type>::type _RhsNested;
typedef typename ei_cleantype<LhsNested>::type _LhsNested;
typedef typename ei_cleantype<RhsNested>::type _RhsNested;
typedef typename _LhsNested::Scalar Scalar;
enum {
@ -118,8 +118,8 @@ template<typename LhsNested, typename RhsNested> class Product<LhsNested,RhsNest
const _LhsNested& rhs() const { return m_rhs; }
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
LhsNested m_lhs;
RhsNested m_rhs;
};
template<typename Lhs, typename Rhs, typename ResultType,
@ -133,23 +133,16 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
struct ListEl
{
int next;
int index;
Scalar value;
};
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// make sure to call innerSize/outerSize since we fake the storage order.
int rows = lhs.innerSize();
int cols = rhs.outerSize();
int size = lhs.outerSize();
ei_assert(size == rhs.rows());
ei_assert(size == rhs.innerSize());
// allocate a temporary buffer
Scalar* buffer = new Scalar[rows];
AmbiVector<Scalar> tempVector(rows);
// estimate the number of non zero entries
float ratioLhs = float(lhs.nonZeros())/float(lhs.rows()*lhs.cols());
@ -164,89 +157,19 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
float ratioColRes = ratioRes;
if (ratioColRes>0.1)
tempVector.init(ratioColRes);
tempVector.setZero();
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
// dense path, the scalar * columns products are accumulated into a dense column
Scalar* __restrict__ tmp = buffer;
// set to zero
for (int k=0; k<rows; ++k)
tmp[k] = 0;
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
Scalar x = rhsIt.value();
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
{
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
Scalar x = rhsIt.value();
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
{
tmp[lhsIt.index()] += lhsIt.value() * x;
}
}
// copy the temporary to the respective res.col()
for (int k=0; k<rows; ++k)
if (tmp[k]!=0)
res.fill(k, j) = tmp[k];
}
else
{
ListEl* __restrict__ tmp = reinterpret_cast<ListEl*>(buffer);
// sparse path, the scalar * columns products are accumulated into a linked list
int tmp_size = 0;
int tmp_start = -1;
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
int tmp_el = tmp_start;
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
{
Scalar v = lhsIt.value() * rhsIt.value();
int id = lhsIt.index();
if (tmp_size==0)
{
tmp_start = 0;
tmp_el = 0;
tmp_size++;
tmp[0].value = v;
tmp[0].index = id;
tmp[0].next = -1;
}
else if (id<tmp[tmp_start].index)
{
tmp[tmp_size].value = v;
tmp[tmp_size].index = id;
tmp[tmp_size].next = tmp_start;
tmp_start = tmp_size;
tmp_size++;
}
else
{
int nextel = tmp[tmp_el].next;
while (nextel >= 0 && tmp[nextel].index<=id)
{
tmp_el = nextel;
nextel = tmp[nextel].next;
}
if (tmp[tmp_el].index==id)
{
tmp[tmp_el].value += v;
}
else
{
tmp[tmp_size].value = v;
tmp[tmp_size].index = id;
tmp[tmp_size].next = tmp[tmp_el].next;
tmp[tmp_el].next = tmp_size;
tmp_size++;
}
}
}
}
int k = tmp_start;
while (k>=0)
{
if (tmp[k].value!=0)
res.fill(tmp[k].index, j) = tmp[k].value;
k = tmp[k].next;
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
}
}
for (typename AmbiVector<Scalar>::Iterator it(tempVector); it; ++it)
res.fill(it.index(), j) = it.value();
}
res.endFill();
}
@ -269,7 +192,7 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// let's transpose the product and fake the matrices are column major
// let's transpose the product to get a column x column product
ei_sparse_product_selector<Rhs,Lhs,ResultType,ColMajor,ColMajor,ColMajor>::run(rhs, lhs, res);
}
};
@ -280,8 +203,11 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// let's transpose the product and fake the matrices are column major
ei_sparse_product_selector<Rhs,Lhs,ResultType,ColMajor,ColMajor,RowMajor>::run(rhs, lhs, res);
// let's transpose the product to get a column x column product
SparseTemporaryType _res(res.cols(), res.rows());
ei_sparse_product_selector<Rhs,Lhs,ResultType,ColMajor,ColMajor,ColMajor>
::run(rhs, lhs, _res);
res = _res.transpose();
}
};