PermutationMatrix: add setIdentity and transpositions methods

LU: make use of that
This commit is contained in:
Benoit Jacob 2009-11-16 21:28:26 -05:00
parent b90744dc05
commit 07412b2075
4 changed files with 90 additions and 18 deletions

View File

@ -116,18 +116,15 @@ class PermutationMatrix : public AnyMatrixBase<PermutationMatrix<SizeAtCompileTi
*/
PermutationMatrix& operator=(const PermutationMatrix& other)
{
m_indices = other.m_indices();
m_indices = other.m_indices;
return *this;
}
#endif
/** Constructs an uninitialized permutation matrix of given size. Note that it is required
* that rows == cols, since permutation matrices are square. The \a cols parameter may be omitted.
/** Constructs an uninitialized permutation matrix of given size.
*/
inline PermutationMatrix(int rows, int cols = rows) : m_indices(rows)
{
ei_assert(rows == cols);
}
inline PermutationMatrix(int size) : m_indices(size)
{}
/** \returns the number of rows */
inline int rows() const { return m_indices.size(); }
@ -159,8 +156,62 @@ class PermutationMatrix : public AnyMatrixBase<PermutationMatrix<SizeAtCompileTi
/** \returns a reference to the stored array representing the permutation. */
IndicesType& indices() { return m_indices; }
/** Resizes to given size. */
inline void resize(int size) { m_indices.resize(size); }
/** Resizes to given size.
*/
inline void resize(int size)
{
m_indices.resize(size);
}
/** Sets *this to be the identity permutation matrix */
void setIdentity()
{
for(int i = 0; i < m_indices.size(); ++i)
m_indices.coeffRef(i) = i;
}
/** Sets *this to be the identity permutation matrix of given size.
*/
void setIdentity(int size)
{
resize(size);
setIdentity();
}
/** Multiplies *this by the transposition \f$(ij)\f$ on the left.
*
* \returns a reference to *this.
*
* \warning This is much slower than applyTranspositionOnTheRight(int,int):
* this has linear complexity and requires a lot of branching.
*
* \sa applyTranspositionOnTheRight(int,int)
*/
PermutationMatrix& applyTranspositionOnTheLeft(int i, int j)
{
ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size());
for(int k = 0; k < m_indices.size(); ++k)
{
if(m_indices.coeff(k) == i) m_indices.coeffRef(k) = j;
else if(m_indices.coeff(k) == j) m_indices.coeffRef(k) = i;
}
return *this;
}
/** Multiplies *this by the transposition \f$(ij)\f$ on the right.
*
* \returns a reference to *this.
*
* This is a fast operation, it only consists in swapping two indices.
*
* \sa applyTranspositionOnTheLeft(int,int)
*/
PermutationMatrix& applyTranspositionOnTheRight(int i, int j)
{
ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size());
std::swap(m_indices.coeffRef(i), m_indices.coeffRef(j));
return *this;
}
/**** inversion and multiplication helpers to hopefully get RVO ****/

View File

@ -389,8 +389,6 @@ FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
{
m_isInitialized = true;
m_lu = matrix;
m_p.resize(matrix.rows());
m_q.resize(matrix.cols());
const int size = matrix.diagonalSize();
const int rows = matrix.rows();
@ -459,13 +457,13 @@ FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
// the main loop is over, we still have to accumulate the transpositions to find the
// permutations P and Q
for(int k = 0; k < matrix.rows(); ++k) m_p.indices().coeffRef(k) = k;
m_p.setIdentity(rows);
for(int k = size-1; k >= 0; --k)
std::swap(m_p.indices().coeffRef(k), m_p.indices().coeffRef(rows_transpositions.coeff(k)));
m_p.applyTranspositionOnTheRight(k, rows_transpositions.coeff(k));
for(int k = 0; k < matrix.cols(); ++k) m_q.indices().coeffRef(k) = k;
m_q.setIdentity(cols);
for(int k = 0; k < size; ++k)
std::swap(m_q.indices().coeffRef(k), m_q.indices().coeffRef(cols_transpositions.coeff(k)));
m_q.applyTranspositionOnTheRight(k, cols_transpositions.coeff(k));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
return *this;

View File

@ -375,7 +375,6 @@ template<typename MatrixType>
PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
{
m_lu = matrix;
m_p.resize(matrix.rows());
ei_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
const int size = matrix.rows();
@ -386,9 +385,9 @@ PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& ma
ei_partial_lu_inplace(m_lu, rows_transpositions, nb_transpositions);
m_det_p = (nb_transpositions%2) ? -1 : 1;
for(int k = 0; k < size; ++k) m_p.indices().coeffRef(k) = k;
m_p.setIdentity(size);
for(int k = size-1; k >= 0; --k)
std::swap(m_p.indices().coeffRef(k), m_p.indices().coeffRef(rows_transpositions.coeff(k)));
m_p.applyTranspositionOnTheRight(k, rows_transpositions.coeff(k));
m_isInitialized = true;
return *this;

View File

@ -81,6 +81,30 @@ template<typename MatrixType> void permutationmatrices(const MatrixType& m)
LeftPermutationType lp2(lv2);
Matrix<Scalar,Rows,Rows> lm2(lp2);
VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast<Scalar>(), lm*lm2);
LeftPermutationType identityp;
identityp.setIdentity(rows);
VERIFY_IS_APPROX(m_original, identityp*m_original);
if(rows>1 && cols>1)
{
lp2 = lp;
int i = ei_random<int>(0, rows-1);
int j;
do j = ei_random<int>(0, rows-1); while(j==i);
lp2.applyTranspositionOnTheLeft(i, j);
lm = lp;
lm.row(i).swap(lm.row(j));
VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>());
RightPermutationType rp2 = rp;
i = ei_random<int>(0, cols-1);
do j = ei_random<int>(0, cols-1); while(j==i);
rp2.applyTranspositionOnTheRight(i, j);
rm = rp;
rm.col(i).swap(rm.col(j));
VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>());
}
}
void test_permutationmatrices()