remove 1 useless layer of functions

This commit is contained in:
Benoit Jacob 2009-10-26 12:30:29 -04:00
parent ec02388a5d
commit 07d1bcffda

View File

@ -25,9 +25,56 @@
#ifndef EIGEN_INVERSE_H
#define EIGEN_INVERSE_H
/********************************************************************
*** Part 1 : optimized implementations for fixed-size 2,3,4 cases ***
********************************************************************/
/**********************************
*** General case implementation ***
**********************************/
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct ei_compute_inverse
{
static inline void run(const MatrixType& matrix, ResultType& result)
{
result = matrix.partialLu().inverse();
}
};
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct ei_compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
/****************************
*** Size 1 implementation ***
****************************/
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse<MatrixType, ResultType, 1>
{
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename MatrixType::Scalar Scalar;
result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
{
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
determinant = matrix.coeff(0,0);
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
}
};
/****************************
*** Size 2 implementation ***
****************************/
template<typename MatrixType, typename ResultType>
inline void ei_compute_inverse_size2_helper(
@ -41,29 +88,39 @@ inline void ei_compute_inverse_size2_helper(
}
template<typename MatrixType, typename ResultType>
inline void ei_compute_inverse_size2(const MatrixType& matrix, ResultType& result)
struct ei_compute_inverse<MatrixType, ResultType, 2>
{
typedef typename ResultType::Scalar Scalar;
const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
ei_compute_inverse_size2_helper(matrix, invdet, result);
}
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
ei_compute_inverse_size2_helper(matrix, invdet, result);
}
};
template<typename MatrixType, typename ResultType>
inline void ei_compute_inverse_and_det_size2_with_check(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
{
typedef typename ResultType::Scalar Scalar;
determinant = matrix.determinant();
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
ei_compute_inverse_size2_helper(matrix, invdet, inverse);
}
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
typedef typename ResultType::Scalar Scalar;
determinant = matrix.determinant();
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
ei_compute_inverse_size2_helper(matrix, invdet, inverse);
}
};
/****************************
*** Size 3 implementation ***
****************************/
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_size3_helper(
@ -82,40 +139,48 @@ void ei_compute_inverse_size3_helper(
}
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_size3(
const MatrixType& matrix,
ResultType& result)
struct ei_compute_inverse<MatrixType, ResultType, 3>
{
typedef typename ResultType::Scalar Scalar;
Matrix<Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = matrix.minor(0,0).determinant();
cofactors_col0.coeffRef(1) = -matrix.minor(1,0).determinant();
cofactors_col0.coeffRef(2) = matrix.minor(2,0).determinant();
const Scalar det = (cofactors_col0.cwise()*matrix.col(0)).sum();
const Scalar invdet = Scalar(1) / det;
ei_compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
}
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
Matrix<Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = matrix.minor(0,0).determinant();
cofactors_col0.coeffRef(1) = -matrix.minor(1,0).determinant();
cofactors_col0.coeffRef(2) = matrix.minor(2,0).determinant();
const Scalar det = (cofactors_col0.cwise()*matrix.col(0)).sum();
const Scalar invdet = Scalar(1) / det;
ei_compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
}
};
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_and_det_size3_with_check(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
{
typedef typename ResultType::Scalar Scalar;
Matrix<Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = matrix.minor(0,0).determinant();
cofactors_col0.coeffRef(1) = -matrix.minor(1,0).determinant();
cofactors_col0.coeffRef(2) = matrix.minor(2,0).determinant();
determinant = (cofactors_col0.cwise()*matrix.col(0)).sum();
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
ei_compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
}
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
typedef typename ResultType::Scalar Scalar;
Matrix<Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = matrix.minor(0,0).determinant();
cofactors_col0.coeffRef(1) = -matrix.minor(1,0).determinant();
cofactors_col0.coeffRef(2) = matrix.minor(2,0).determinant();
determinant = (cofactors_col0.cwise()*matrix.col(0)).sum();
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
ei_compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
}
};
/****************************
*** Size 4 implementation ***
****************************/
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_size4_helper(const MatrixType& matrix, ResultType& result)
@ -136,7 +201,7 @@ void ei_compute_inverse_size4_helper(const MatrixType& matrix, ResultType& resul
typedef Block<ResultType,2,2> XprBlock22;
typedef typename MatrixBase<XprBlock22>::PlainMatrixType Block22;
Block22 P_inverse;
ei_compute_inverse_size2(matrix.template block<2,2>(0,0), P_inverse);
ei_compute_inverse<XprBlock22, Block22>::run(matrix.template block<2,2>(0,0), P_inverse);
const Block22 Q = matrix.template block<2,2>(0,2);
const Block22 P_inverse_times_Q = P_inverse * Q;
const XprBlock22 R = matrix.template block<2,2>(2,0);
@ -145,7 +210,7 @@ void ei_compute_inverse_size4_helper(const MatrixType& matrix, ResultType& resul
const XprBlock22 S = matrix.template block<2,2>(2,2);
const Block22 X = S - R_times_P_inverse_times_Q;
Block22 Y;
ei_compute_inverse_size2(X, Y);
ei_compute_inverse<Block22, Block22>::run(X, Y);
result.template block<2,2>(2,2) = Y;
result.template block<2,2>(2,0) = - Y * R_times_P_inverse;
const Block22 Z = P_inverse_times_Q * Y;
@ -153,109 +218,69 @@ void ei_compute_inverse_size4_helper(const MatrixType& matrix, ResultType& resul
result.template block<2,2>(0,0) = P_inverse + Z * R_times_P_inverse;
}
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_size4(const MatrixType& _matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
// we will do row permutations on the matrix. This copy should have negligible cost.
// if not, consider working in-place on the matrix (const-cast it, but then undo the permutations
// to nevertheless honor constness)
typename MatrixType::PlainMatrixType matrix(_matrix);
// let's extract from the 2 first colums a 2x2 block whose determinant is as big as possible.
int good_row0=0, good_row1=1;
RealScalar good_absdet(-1);
// this double for loop shouldn't be too costly: only 6 iterations
for(int row0=0; row0<4; ++row0) {
for(int row1=row0+1; row1<4; ++row1)
{
RealScalar absdet = ei_abs(matrix.coeff(row0,0)*matrix.coeff(row1,1)
- matrix.coeff(row0,1)*matrix.coeff(row1,0));
if(absdet > good_absdet)
{
good_absdet = absdet;
good_row0 = row0;
good_row1 = row1;
}
}
}
// do row permutations to move this 2x2 block to the top
matrix.row(0).swap(matrix.row(good_row0));
matrix.row(1).swap(matrix.row(good_row1));
// now applying our helper function is numerically stable
ei_compute_inverse_size4_helper(matrix, result);
// Since we did row permutations on the original matrix, we need to do column permutations
// in the reverse order on the inverse
result.col(1).swap(result.col(good_row1));
result.col(0).swap(result.col(good_row0));
}
template<typename MatrixType, typename ResultType>
void ei_compute_inverse_and_det_size4_with_check(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
determinant = matrix.determinant();
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(invertible) ei_compute_inverse_size4(matrix, result);
}
/***********************************************
*** Part 2 : selectors and MatrixBase methods ***
***********************************************/
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct ei_compute_inverse
{
static inline void run(const MatrixType& matrix, ResultType& result)
{
result = matrix.partialLu().inverse();
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse<MatrixType, ResultType, 1>
{
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename MatrixType::Scalar Scalar;
result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse<MatrixType, ResultType, 2>
{
static inline void run(const MatrixType& matrix, ResultType& result)
{
ei_compute_inverse_size2(matrix, result);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse<MatrixType, ResultType, 3>
{
static inline void run(const MatrixType& matrix, ResultType& result)
{
ei_compute_inverse_size3(matrix, result);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse<MatrixType, ResultType, 4>
{
static inline void run(const MatrixType& matrix, ResultType& result)
static inline void run(const MatrixType& _matrix, ResultType& result)
{
ei_compute_inverse_size4(matrix, result);
typedef typename ResultType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
// we will do row permutations on the matrix. This copy should have negligible cost.
// if not, consider working in-place on the matrix (const-cast it, but then undo the permutations
// to nevertheless honor constness)
typename MatrixType::PlainMatrixType matrix(_matrix);
// let's extract from the 2 first colums a 2x2 block whose determinant is as big as possible.
int good_row0=0, good_row1=1;
RealScalar good_absdet(-1);
// this double for loop shouldn't be too costly: only 6 iterations
for(int row0=0; row0<4; ++row0) {
for(int row1=row0+1; row1<4; ++row1)
{
RealScalar absdet = ei_abs(matrix.coeff(row0,0)*matrix.coeff(row1,1)
- matrix.coeff(row0,1)*matrix.coeff(row1,0));
if(absdet > good_absdet)
{
good_absdet = absdet;
good_row0 = row0;
good_row1 = row1;
}
}
}
// do row permutations to move this 2x2 block to the top
matrix.row(0).swap(matrix.row(good_row0));
matrix.row(1).swap(matrix.row(good_row1));
// now applying our helper function is numerically stable
ei_compute_inverse_size4_helper(matrix, result);
// Since we did row permutations on the original matrix, we need to do column permutations
// in the reverse order on the inverse
result.col(1).swap(result.col(good_row1));
result.col(0).swap(result.col(good_row0));
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
{
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
determinant = matrix.determinant();
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(invertible) ei_compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
}
};
/*************************
*** MatrixBase methods ***
*************************/
/** \lu_module
*
* \returns the matrix inverse of this matrix.
@ -291,79 +316,6 @@ inline const typename MatrixBase<Derived>::PlainMatrixType MatrixBase<Derived>::
return result;
}
/********************************************
* Compute inverse with invertibility check *
*******************************************/
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct ei_compute_inverse_and_det_with_check {};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
{
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
determinant = matrix.coeff(0,0);
invertible = ei_abs(determinant) > absDeterminantThreshold;
if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
{
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
ei_compute_inverse_and_det_size2_with_check
(matrix, absDeterminantThreshold, result, determinant, invertible);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
{
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
ei_compute_inverse_and_det_size3_with_check
(matrix, absDeterminantThreshold, result, determinant, invertible);
}
};
template<typename MatrixType, typename ResultType>
struct ei_compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
{
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
ei_compute_inverse_and_det_size4_with_check
(matrix, absDeterminantThreshold, result, determinant, invertible);
}
};
/** \lu_module
*
* Computation of matrix inverse and determinant, with invertibility check.
@ -401,5 +353,4 @@ inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
(derived(), absDeterminantThreshold, inverse, determinant, invertible);
}
#endif // EIGEN_INVERSE_H