mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
Clean-up of MatrixSquareRoot.
This commit is contained in:
parent
463343fb37
commit
084dc63b4c
@ -141,7 +141,7 @@ void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixTy
|
||||
break;
|
||||
++numberOfExtraSquareRoots;
|
||||
}
|
||||
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
|
||||
matrix_sqrt_triangular(T, sqrtT);
|
||||
T = sqrtT.template triangularView<Upper>();
|
||||
++numberOfSquareRoots;
|
||||
}
|
||||
|
@ -219,7 +219,7 @@ void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
|
||||
break;
|
||||
hasExtraSquareRoot = true;
|
||||
}
|
||||
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
|
||||
matrix_sqrt_triangular(T, sqrtT);
|
||||
T = sqrtT.template triangularView<Upper>();
|
||||
++numberOfSquareRoots;
|
||||
}
|
||||
|
@ -12,133 +12,16 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
* \brief Class for computing matrix square roots of upper quasi-triangular matrices.
|
||||
* \tparam MatrixType type of the argument of the matrix square root,
|
||||
* expected to be an instantiation of the Matrix class template.
|
||||
*
|
||||
* This class computes the square root of the upper quasi-triangular
|
||||
* matrix stored in the upper Hessenberg part of the matrix passed to
|
||||
* the constructor.
|
||||
*
|
||||
* \sa MatrixSquareRoot, MatrixSquareRootTriangular
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
class MatrixSquareRootQuasiTriangular : internal::noncopyable
|
||||
{
|
||||
public:
|
||||
|
||||
/** \brief Constructor.
|
||||
*
|
||||
* \param[in] A upper quasi-triangular matrix whose square root
|
||||
* is to be computed.
|
||||
*
|
||||
* The class stores a reference to \p A, so it should not be
|
||||
* changed (or destroyed) before compute() is called.
|
||||
*/
|
||||
explicit MatrixSquareRootQuasiTriangular(const MatrixType& A)
|
||||
: m_A(A)
|
||||
{
|
||||
eigen_assert(A.rows() == A.cols());
|
||||
}
|
||||
|
||||
/** \brief Compute the matrix square root
|
||||
*
|
||||
* \param[out] result square root of \p A, as specified in the constructor.
|
||||
*
|
||||
* Only the upper Hessenberg part of \p result is updated, the
|
||||
* rest is not touched. See MatrixBase::sqrt() for details on
|
||||
* how this computation is implemented.
|
||||
*/
|
||||
template <typename ResultType> void compute(ResultType &result);
|
||||
|
||||
private:
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
|
||||
void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
|
||||
void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
|
||||
void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
|
||||
typename MatrixType::Index i, typename MatrixType::Index j);
|
||||
void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
|
||||
typename MatrixType::Index i, typename MatrixType::Index j);
|
||||
void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
|
||||
typename MatrixType::Index i, typename MatrixType::Index j);
|
||||
void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
|
||||
typename MatrixType::Index i, typename MatrixType::Index j);
|
||||
|
||||
template <typename SmallMatrixType>
|
||||
static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
|
||||
const SmallMatrixType& B, const SmallMatrixType& C);
|
||||
|
||||
const MatrixType& m_A;
|
||||
};
|
||||
|
||||
template <typename MatrixType>
|
||||
template <typename ResultType>
|
||||
void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
|
||||
{
|
||||
result.resize(m_A.rows(), m_A.cols());
|
||||
computeDiagonalPartOfSqrt(result, m_A);
|
||||
computeOffDiagonalPartOfSqrt(result, m_A);
|
||||
}
|
||||
|
||||
// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
|
||||
// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
|
||||
template <typename MatrixType>
|
||||
void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT,
|
||||
const MatrixType& T)
|
||||
{
|
||||
using std::sqrt;
|
||||
const Index size = m_A.rows();
|
||||
for (Index i = 0; i < size; i++) {
|
||||
if (i == size - 1 || T.coeff(i+1, i) == 0) {
|
||||
eigen_assert(T(i,i) >= 0);
|
||||
sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
|
||||
}
|
||||
else {
|
||||
compute2x2diagonalBlock(sqrtT, T, i);
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
|
||||
// post: sqrtT is the square root of T.
|
||||
template <typename MatrixType>
|
||||
void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT,
|
||||
const MatrixType& T)
|
||||
{
|
||||
const Index size = m_A.rows();
|
||||
for (Index j = 1; j < size; j++) {
|
||||
if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
|
||||
continue;
|
||||
for (Index i = j-1; i >= 0; i--) {
|
||||
if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
|
||||
continue;
|
||||
bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
|
||||
bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
|
||||
if (iBlockIs2x2 && jBlockIs2x2)
|
||||
compute2x2offDiagonalBlock(sqrtT, T, i, j);
|
||||
else if (iBlockIs2x2 && !jBlockIs2x2)
|
||||
compute2x1offDiagonalBlock(sqrtT, T, i, j);
|
||||
else if (!iBlockIs2x2 && jBlockIs2x2)
|
||||
compute1x2offDiagonalBlock(sqrtT, T, i, j);
|
||||
else if (!iBlockIs2x2 && !jBlockIs2x2)
|
||||
compute1x1offDiagonalBlock(sqrtT, T, i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
namespace internal {
|
||||
|
||||
// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
|
||||
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
|
||||
template <typename MatrixType>
|
||||
void MatrixSquareRootQuasiTriangular<MatrixType>
|
||||
::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
|
||||
template <typename MatrixType, typename ResultType>
|
||||
void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
|
||||
{
|
||||
// TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
|
||||
// in EigenSolver. If we expose it, we could call it directly from here.
|
||||
typedef typename traits<MatrixType>::Scalar Scalar;
|
||||
Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
|
||||
EigenSolver<Matrix<Scalar,2,2> > es(block);
|
||||
sqrtT.template block<2,2>(i,i)
|
||||
@ -148,21 +31,19 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
|
||||
// pre: block structure of T is such that (i,j) is a 1x1 block,
|
||||
// all blocks of sqrtT to left of and below (i,j) are correct
|
||||
// post: sqrtT(i,j) has the correct value
|
||||
template <typename MatrixType>
|
||||
void MatrixSquareRootQuasiTriangular<MatrixType>
|
||||
::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
|
||||
typename MatrixType::Index i, typename MatrixType::Index j)
|
||||
template <typename MatrixType, typename ResultType>
|
||||
void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
|
||||
{
|
||||
typedef typename traits<MatrixType>::Scalar Scalar;
|
||||
Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
|
||||
sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
|
||||
}
|
||||
|
||||
// similar to compute1x1offDiagonalBlock()
|
||||
template <typename MatrixType>
|
||||
void MatrixSquareRootQuasiTriangular<MatrixType>
|
||||
::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
|
||||
typename MatrixType::Index i, typename MatrixType::Index j)
|
||||
template <typename MatrixType, typename ResultType>
|
||||
void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
|
||||
{
|
||||
typedef typename traits<MatrixType>::Scalar Scalar;
|
||||
Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
|
||||
if (j-i > 1)
|
||||
rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
|
||||
@ -172,11 +53,10 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
|
||||
}
|
||||
|
||||
// similar to compute1x1offDiagonalBlock()
|
||||
template <typename MatrixType>
|
||||
void MatrixSquareRootQuasiTriangular<MatrixType>
|
||||
::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
|
||||
typename MatrixType::Index i, typename MatrixType::Index j)
|
||||
template <typename MatrixType, typename ResultType>
|
||||
void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
|
||||
{
|
||||
typedef typename traits<MatrixType>::Scalar Scalar;
|
||||
Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
|
||||
if (j-i > 2)
|
||||
rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
|
||||
@ -186,31 +66,25 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
|
||||
}
|
||||
|
||||
// similar to compute1x1offDiagonalBlock()
|
||||
template <typename MatrixType>
|
||||
void MatrixSquareRootQuasiTriangular<MatrixType>
|
||||
::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
|
||||
typename MatrixType::Index i, typename MatrixType::Index j)
|
||||
template <typename MatrixType, typename ResultType>
|
||||
void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
|
||||
{
|
||||
typedef typename traits<MatrixType>::Scalar Scalar;
|
||||
Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
|
||||
Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
|
||||
Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
|
||||
if (j-i > 2)
|
||||
C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
|
||||
Matrix<Scalar,2,2> X;
|
||||
solveAuxiliaryEquation(X, A, B, C);
|
||||
matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
|
||||
sqrtT.template block<2,2>(i,j) = X;
|
||||
}
|
||||
|
||||
// solves the equation A X + X B = C where all matrices are 2-by-2
|
||||
template <typename MatrixType>
|
||||
template <typename SmallMatrixType>
|
||||
void MatrixSquareRootQuasiTriangular<MatrixType>
|
||||
::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
|
||||
const SmallMatrixType& B, const SmallMatrixType& C)
|
||||
void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
|
||||
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);
|
||||
|
||||
typedef typename traits<MatrixType>::Scalar Scalar;
|
||||
Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
|
||||
coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
|
||||
coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
|
||||
@ -241,164 +115,193 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
|
||||
}
|
||||
|
||||
|
||||
// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
|
||||
// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
|
||||
template <typename MatrixType, typename ResultType>
|
||||
void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
|
||||
{
|
||||
using std::sqrt;
|
||||
typedef typename MatrixType::Index Index;
|
||||
const Index size = T.rows();
|
||||
for (Index i = 0; i < size; i++) {
|
||||
if (i == size - 1 || T.coeff(i+1, i) == 0) {
|
||||
eigen_assert(T(i,i) >= 0);
|
||||
sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
|
||||
}
|
||||
else {
|
||||
matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
|
||||
// post: sqrtT is the square root of T.
|
||||
template <typename MatrixType, typename ResultType>
|
||||
void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
const Index size = T.rows();
|
||||
for (Index j = 1; j < size; j++) {
|
||||
if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
|
||||
continue;
|
||||
for (Index i = j-1; i >= 0; i--) {
|
||||
if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
|
||||
continue;
|
||||
bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
|
||||
bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
|
||||
if (iBlockIs2x2 && jBlockIs2x2)
|
||||
matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
|
||||
else if (iBlockIs2x2 && !jBlockIs2x2)
|
||||
matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
|
||||
else if (!iBlockIs2x2 && jBlockIs2x2)
|
||||
matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
|
||||
else if (!iBlockIs2x2 && !jBlockIs2x2)
|
||||
matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // end of namespace internal
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
* \brief Class for computing matrix square roots of upper triangular matrices.
|
||||
* \tparam MatrixType type of the argument of the matrix square root,
|
||||
* expected to be an instantiation of the Matrix class template.
|
||||
* \brief Compute matrix square root of quasi-triangular matrix.
|
||||
*
|
||||
* This class computes the square root of the upper triangular matrix
|
||||
* stored in the upper triangular part (including the diagonal) of
|
||||
* the matrix passed to the constructor.
|
||||
* \tparam MatrixType type of \p arg, the argument of matrix square root,
|
||||
* expected to be an instantiation of the Matrix class template.
|
||||
* \tparam ResultType type of \p result, where result is to be stored.
|
||||
* \param[in] arg argument of matrix square root.
|
||||
* \param[out] result matrix square root of upper Hessenberg part of \p arg.
|
||||
*
|
||||
* This function computes the square root of the upper quasi-triangular matrix stored in the upper
|
||||
* Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is
|
||||
* not touched. See MatrixBase::sqrt() for details on how this computation is implemented.
|
||||
*
|
||||
* \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
class MatrixSquareRootTriangular : internal::noncopyable
|
||||
template <typename MatrixType, typename ResultType>
|
||||
void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
|
||||
{
|
||||
public:
|
||||
explicit MatrixSquareRootTriangular(const MatrixType& A)
|
||||
: m_A(A)
|
||||
{
|
||||
eigen_assert(A.rows() == A.cols());
|
||||
}
|
||||
eigen_assert(arg.rows() == arg.cols());
|
||||
result.resize(arg.rows(), arg.cols());
|
||||
internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
|
||||
internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
|
||||
}
|
||||
|
||||
/** \brief Compute the matrix square root
|
||||
*
|
||||
* \param[out] result square root of \p A, as specified in the constructor.
|
||||
*
|
||||
* Only the upper triangular part (including the diagonal) of
|
||||
* \p result is updated, the rest is not touched. See
|
||||
* MatrixBase::sqrt() for details on how this computation is
|
||||
* implemented.
|
||||
*/
|
||||
template <typename ResultType> void compute(ResultType &result);
|
||||
|
||||
private:
|
||||
const MatrixType& m_A;
|
||||
};
|
||||
|
||||
template <typename MatrixType>
|
||||
template <typename ResultType>
|
||||
void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
* \brief Compute matrix square root of triangular matrix.
|
||||
*
|
||||
* \tparam MatrixType type of \p arg, the argument of matrix square root,
|
||||
* expected to be an instantiation of the Matrix class template.
|
||||
* \tparam ResultType type of \p result, where result is to be stored.
|
||||
* \param[in] arg argument of matrix square root.
|
||||
* \param[out] result matrix square root of upper triangular part of \p arg.
|
||||
*
|
||||
* Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
|
||||
* touched. See MatrixBase::sqrt() for details on how this computation is implemented.
|
||||
*
|
||||
* \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
|
||||
*/
|
||||
template <typename MatrixType, typename ResultType>
|
||||
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
|
||||
{
|
||||
using std::sqrt;
|
||||
|
||||
// Compute square root of m_A and store it in upper triangular part of result
|
||||
// This uses that the square root of triangular matrices can be computed directly.
|
||||
result.resize(m_A.rows(), m_A.cols());
|
||||
typedef typename MatrixType::Index Index;
|
||||
for (Index i = 0; i < m_A.rows(); i++) {
|
||||
result.coeffRef(i,i) = sqrt(m_A.coeff(i,i));
|
||||
}
|
||||
for (Index j = 1; j < m_A.cols(); j++) {
|
||||
for (Index i = j-1; i >= 0; i--) {
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
eigen_assert(arg.rows() == arg.cols());
|
||||
|
||||
// Compute square root of arg and store it in upper triangular part of result
|
||||
// This uses that the square root of triangular matrices can be computed directly.
|
||||
result.resize(arg.rows(), arg.cols());
|
||||
for (Index i = 0; i < arg.rows(); i++) {
|
||||
result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
|
||||
}
|
||||
for (Index j = 1; j < arg.cols(); j++) {
|
||||
for (Index i = j-1; i >= 0; i--) {
|
||||
// if i = j-1, then segment has length 0 so tmp = 0
|
||||
Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
|
||||
// denominator may be zero if original matrix is singular
|
||||
result.coeffRef(i,j) = (m_A.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
|
||||
result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
* \brief Class for computing matrix square roots of general matrices.
|
||||
* \brief Helper struct for computing matrix square roots of general matrices.
|
||||
* \tparam MatrixType type of the argument of the matrix square root,
|
||||
* expected to be an instantiation of the Matrix class template.
|
||||
*
|
||||
* \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
|
||||
*/
|
||||
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
|
||||
class MatrixSquareRoot
|
||||
struct matrix_sqrt_compute
|
||||
{
|
||||
public:
|
||||
|
||||
/** \brief Constructor.
|
||||
*
|
||||
* \param[in] A matrix whose square root is to be computed.
|
||||
*
|
||||
* The class stores a reference to \p A, so it should not be
|
||||
* changed (or destroyed) before compute() is called.
|
||||
*/
|
||||
explicit MatrixSquareRoot(const MatrixType& A);
|
||||
|
||||
/** \brief Compute the matrix square root
|
||||
*
|
||||
* \param[out] result square root of \p A, as specified in the constructor.
|
||||
*
|
||||
* See MatrixBase::sqrt() for details on how this computation is
|
||||
* implemented.
|
||||
*/
|
||||
template <typename ResultType> void compute(ResultType &result);
|
||||
/** \brief Compute the matrix square root
|
||||
*
|
||||
* \param[in] arg matrix whose square root is to be computed.
|
||||
* \param[out] result square root of \p arg.
|
||||
*
|
||||
* See MatrixBase::sqrt() for details on how this computation is implemented.
|
||||
*/
|
||||
template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);
|
||||
};
|
||||
|
||||
|
||||
// ********** Partial specialization for real matrices **********
|
||||
|
||||
template <typename MatrixType>
|
||||
class MatrixSquareRoot<MatrixType, 0>
|
||||
struct matrix_sqrt_compute<MatrixType, 0>
|
||||
{
|
||||
public:
|
||||
template <typename ResultType>
|
||||
static void run(const MatrixType &arg, ResultType &result)
|
||||
{
|
||||
eigen_assert(arg.rows() == arg.cols());
|
||||
|
||||
explicit MatrixSquareRoot(const MatrixType& A)
|
||||
: m_A(A)
|
||||
{
|
||||
eigen_assert(A.rows() == A.cols());
|
||||
}
|
||||
// Compute Schur decomposition of arg
|
||||
const RealSchur<MatrixType> schurOfA(arg);
|
||||
const MatrixType& T = schurOfA.matrixT();
|
||||
const MatrixType& U = schurOfA.matrixU();
|
||||
|
||||
template <typename ResultType> void compute(ResultType &result)
|
||||
{
|
||||
// Compute Schur decomposition of m_A
|
||||
const RealSchur<MatrixType> schurOfA(m_A);
|
||||
const MatrixType& T = schurOfA.matrixT();
|
||||
const MatrixType& U = schurOfA.matrixU();
|
||||
// Compute square root of T
|
||||
MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
|
||||
matrix_sqrt_quasi_triangular(T, sqrtT);
|
||||
|
||||
// Compute square root of T
|
||||
MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.cols());
|
||||
MatrixSquareRootQuasiTriangular<MatrixType>(T).compute(sqrtT);
|
||||
|
||||
// Compute square root of m_A
|
||||
result = U * sqrtT * U.adjoint();
|
||||
}
|
||||
|
||||
private:
|
||||
const MatrixType& m_A;
|
||||
// Compute square root of arg
|
||||
result = U * sqrtT * U.adjoint();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// ********** Partial specialization for complex matrices **********
|
||||
|
||||
template <typename MatrixType>
|
||||
class MatrixSquareRoot<MatrixType, 1> : internal::noncopyable
|
||||
struct matrix_sqrt_compute<MatrixType, 1>
|
||||
{
|
||||
public:
|
||||
template <typename ResultType>
|
||||
static void run(const MatrixType &arg, ResultType &result)
|
||||
{
|
||||
eigen_assert(arg.rows() == arg.cols());
|
||||
|
||||
explicit MatrixSquareRoot(const MatrixType& A)
|
||||
: m_A(A)
|
||||
{
|
||||
eigen_assert(A.rows() == A.cols());
|
||||
}
|
||||
// Compute Schur decomposition of arg
|
||||
const ComplexSchur<MatrixType> schurOfA(arg);
|
||||
const MatrixType& T = schurOfA.matrixT();
|
||||
const MatrixType& U = schurOfA.matrixU();
|
||||
|
||||
template <typename ResultType> void compute(ResultType &result)
|
||||
{
|
||||
// Compute Schur decomposition of m_A
|
||||
const ComplexSchur<MatrixType> schurOfA(m_A);
|
||||
const MatrixType& T = schurOfA.matrixT();
|
||||
const MatrixType& U = schurOfA.matrixU();
|
||||
// Compute square root of T
|
||||
MatrixType sqrtT;
|
||||
matrix_sqrt_triangular(T, sqrtT);
|
||||
|
||||
// Compute square root of T
|
||||
MatrixType sqrtT;
|
||||
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
|
||||
|
||||
// Compute square root of m_A
|
||||
result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
|
||||
}
|
||||
|
||||
private:
|
||||
const MatrixType& m_A;
|
||||
// Compute square root of arg
|
||||
result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup MatrixFunctions_Module
|
||||
*
|
||||
@ -432,9 +335,9 @@ template<typename Derived> class MatrixSquareRootReturnValue
|
||||
template <typename ResultType>
|
||||
inline void evalTo(ResultType& result) const
|
||||
{
|
||||
const typename Derived::PlainObject srcEvaluated = m_src.eval();
|
||||
MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
|
||||
me.compute(result);
|
||||
typedef typename Derived::PlainObject PlainObject;
|
||||
const PlainObject srcEvaluated = m_src.eval();
|
||||
internal::matrix_sqrt_compute<PlainObject>::run(srcEvaluated, result);
|
||||
}
|
||||
|
||||
Index rows() const { return m_src.rows(); }
|
||||
|
@ -100,8 +100,6 @@ template<typename MatrixType>
|
||||
void testSingular(MatrixType m, double tol)
|
||||
{
|
||||
const int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex;
|
||||
typedef typename internal::conditional< IsComplex, MatrixSquareRootTriangular<MatrixType>,
|
||||
MatrixSquareRootQuasiTriangular<MatrixType> >::type SquareRootType;
|
||||
typedef typename internal::conditional<IsComplex, TriangularView<MatrixType,Upper>, const MatrixType&>::type TriangularType;
|
||||
typename internal::conditional< IsComplex, ComplexSchur<MatrixType>, RealSchur<MatrixType> >::type schur;
|
||||
MatrixType T;
|
||||
@ -116,13 +114,13 @@ void testSingular(MatrixType m, double tol)
|
||||
processTriangularMatrix<MatrixType>::run(m, T, U);
|
||||
MatrixPower<MatrixType> mpow(m);
|
||||
|
||||
SquareRootType(T).compute(T);
|
||||
T = T.sqrt();
|
||||
VERIFY(mpow(0.5).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
|
||||
|
||||
SquareRootType(T).compute(T);
|
||||
T = T.sqrt();
|
||||
VERIFY(mpow(0.25).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
|
||||
|
||||
SquareRootType(T).compute(T);
|
||||
T = T.sqrt();
|
||||
VERIFY(mpow(0.125).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user