Clean-up of MatrixSquareRoot.

This commit is contained in:
Jitse Niesen 2013-07-22 13:56:15 +01:00
parent 463343fb37
commit 084dc63b4c
4 changed files with 164 additions and 263 deletions

View File

@ -141,7 +141,7 @@ void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixTy
break;
++numberOfExtraSquareRoots;
}
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
matrix_sqrt_triangular(T, sqrtT);
T = sqrtT.template triangularView<Upper>();
++numberOfSquareRoots;
}

View File

@ -219,7 +219,7 @@ void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
break;
hasExtraSquareRoot = true;
}
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
matrix_sqrt_triangular(T, sqrtT);
T = sqrtT.template triangularView<Upper>();
++numberOfSquareRoots;
}

View File

@ -12,133 +12,16 @@
namespace Eigen {
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix square roots of upper quasi-triangular matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* This class computes the square root of the upper quasi-triangular
* matrix stored in the upper Hessenberg part of the matrix passed to
* the constructor.
*
* \sa MatrixSquareRoot, MatrixSquareRootTriangular
*/
template <typename MatrixType>
class MatrixSquareRootQuasiTriangular : internal::noncopyable
{
public:
/** \brief Constructor.
*
* \param[in] A upper quasi-triangular matrix whose square root
* is to be computed.
*
* The class stores a reference to \p A, so it should not be
* changed (or destroyed) before compute() is called.
*/
explicit MatrixSquareRootQuasiTriangular(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
/** \brief Compute the matrix square root
*
* \param[out] result square root of \p A, as specified in the constructor.
*
* Only the upper Hessenberg part of \p result is updated, the
* rest is not touched. See MatrixBase::sqrt() for details on
* how this computation is implemented.
*/
template <typename ResultType> void compute(ResultType &result);
private:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
template <typename SmallMatrixType>
static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
const SmallMatrixType& B, const SmallMatrixType& C);
const MatrixType& m_A;
};
template <typename MatrixType>
template <typename ResultType>
void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
{
result.resize(m_A.rows(), m_A.cols());
computeDiagonalPartOfSqrt(result, m_A);
computeOffDiagonalPartOfSqrt(result, m_A);
}
// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT,
const MatrixType& T)
{
using std::sqrt;
const Index size = m_A.rows();
for (Index i = 0; i < size; i++) {
if (i == size - 1 || T.coeff(i+1, i) == 0) {
eigen_assert(T(i,i) >= 0);
sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
}
else {
compute2x2diagonalBlock(sqrtT, T, i);
++i;
}
}
}
// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
// post: sqrtT is the square root of T.
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT,
const MatrixType& T)
{
const Index size = m_A.rows();
for (Index j = 1; j < size; j++) {
if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
continue;
for (Index i = j-1; i >= 0; i--) {
if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
continue;
bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
if (iBlockIs2x2 && jBlockIs2x2)
compute2x2offDiagonalBlock(sqrtT, T, i, j);
else if (iBlockIs2x2 && !jBlockIs2x2)
compute2x1offDiagonalBlock(sqrtT, T, i, j);
else if (!iBlockIs2x2 && jBlockIs2x2)
compute1x2offDiagonalBlock(sqrtT, T, i, j);
else if (!iBlockIs2x2 && !jBlockIs2x2)
compute1x1offDiagonalBlock(sqrtT, T, i, j);
}
}
}
namespace internal {
// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
{
// TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
// in EigenSolver. If we expose it, we could call it directly from here.
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
EigenSolver<Matrix<Scalar,2,2> > es(block);
sqrtT.template block<2,2>(i,i)
@ -148,21 +31,19 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
// pre: block structure of T is such that (i,j) is a 1x1 block,
// all blocks of sqrtT to left of and below (i,j) are correct
// post: sqrtT(i,j) has the correct value
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
}
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
if (j-i > 1)
rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
@ -172,11 +53,10 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
}
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
if (j-i > 2)
rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
@ -186,31 +66,25 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
}
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
if (j-i > 2)
C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
Matrix<Scalar,2,2> X;
solveAuxiliaryEquation(X, A, B, C);
matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
sqrtT.template block<2,2>(i,j) = X;
}
// solves the equation A X + X B = C where all matrices are 2-by-2
template <typename MatrixType>
template <typename SmallMatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
const SmallMatrixType& B, const SmallMatrixType& C)
void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
{
EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);
typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
@ -241,164 +115,193 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
}
// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
{
using std::sqrt;
typedef typename MatrixType::Index Index;
const Index size = T.rows();
for (Index i = 0; i < size; i++) {
if (i == size - 1 || T.coeff(i+1, i) == 0) {
eigen_assert(T(i,i) >= 0);
sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
}
else {
matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
++i;
}
}
}
// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
// post: sqrtT is the square root of T.
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
{
typedef typename MatrixType::Index Index;
const Index size = T.rows();
for (Index j = 1; j < size; j++) {
if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
continue;
for (Index i = j-1; i >= 0; i--) {
if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
continue;
bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
if (iBlockIs2x2 && jBlockIs2x2)
matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
else if (iBlockIs2x2 && !jBlockIs2x2)
matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
else if (!iBlockIs2x2 && jBlockIs2x2)
matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
else if (!iBlockIs2x2 && !jBlockIs2x2)
matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
}
}
}
} // end of namespace internal
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix square roots of upper triangular matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
* \brief Compute matrix square root of quasi-triangular matrix.
*
* This class computes the square root of the upper triangular matrix
* stored in the upper triangular part (including the diagonal) of
* the matrix passed to the constructor.
* \tparam MatrixType type of \p arg, the argument of matrix square root,
* expected to be an instantiation of the Matrix class template.
* \tparam ResultType type of \p result, where result is to be stored.
* \param[in] arg argument of matrix square root.
* \param[out] result matrix square root of upper Hessenberg part of \p arg.
*
* This function computes the square root of the upper quasi-triangular matrix stored in the upper
* Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is
* not touched. See MatrixBase::sqrt() for details on how this computation is implemented.
*
* \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
*/
template <typename MatrixType>
class MatrixSquareRootTriangular : internal::noncopyable
template <typename MatrixType, typename ResultType>
void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
{
public:
explicit MatrixSquareRootTriangular(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
eigen_assert(arg.rows() == arg.cols());
result.resize(arg.rows(), arg.cols());
internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
}
/** \brief Compute the matrix square root
*
* \param[out] result square root of \p A, as specified in the constructor.
*
* Only the upper triangular part (including the diagonal) of
* \p result is updated, the rest is not touched. See
* MatrixBase::sqrt() for details on how this computation is
* implemented.
*/
template <typename ResultType> void compute(ResultType &result);
private:
const MatrixType& m_A;
};
template <typename MatrixType>
template <typename ResultType>
void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
/** \ingroup MatrixFunctions_Module
* \brief Compute matrix square root of triangular matrix.
*
* \tparam MatrixType type of \p arg, the argument of matrix square root,
* expected to be an instantiation of the Matrix class template.
* \tparam ResultType type of \p result, where result is to be stored.
* \param[in] arg argument of matrix square root.
* \param[out] result matrix square root of upper triangular part of \p arg.
*
* Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
* touched. See MatrixBase::sqrt() for details on how this computation is implemented.
*
* \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
*/
template <typename MatrixType, typename ResultType>
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
{
using std::sqrt;
// Compute square root of m_A and store it in upper triangular part of result
// This uses that the square root of triangular matrices can be computed directly.
result.resize(m_A.rows(), m_A.cols());
typedef typename MatrixType::Index Index;
for (Index i = 0; i < m_A.rows(); i++) {
result.coeffRef(i,i) = sqrt(m_A.coeff(i,i));
}
for (Index j = 1; j < m_A.cols(); j++) {
for (Index i = j-1; i >= 0; i--) {
typedef typename MatrixType::Scalar Scalar;
eigen_assert(arg.rows() == arg.cols());
// Compute square root of arg and store it in upper triangular part of result
// This uses that the square root of triangular matrices can be computed directly.
result.resize(arg.rows(), arg.cols());
for (Index i = 0; i < arg.rows(); i++) {
result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
}
for (Index j = 1; j < arg.cols(); j++) {
for (Index i = j-1; i >= 0; i--) {
// if i = j-1, then segment has length 0 so tmp = 0
Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
// denominator may be zero if original matrix is singular
result.coeffRef(i,j) = (m_A.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
}
}
}
namespace internal {
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix square roots of general matrices.
* \brief Helper struct for computing matrix square roots of general matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
*/
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
class MatrixSquareRoot
struct matrix_sqrt_compute
{
public:
/** \brief Constructor.
*
* \param[in] A matrix whose square root is to be computed.
*
* The class stores a reference to \p A, so it should not be
* changed (or destroyed) before compute() is called.
*/
explicit MatrixSquareRoot(const MatrixType& A);
/** \brief Compute the matrix square root
*
* \param[out] result square root of \p A, as specified in the constructor.
*
* See MatrixBase::sqrt() for details on how this computation is
* implemented.
*/
template <typename ResultType> void compute(ResultType &result);
/** \brief Compute the matrix square root
*
* \param[in] arg matrix whose square root is to be computed.
* \param[out] result square root of \p arg.
*
* See MatrixBase::sqrt() for details on how this computation is implemented.
*/
template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);
};
// ********** Partial specialization for real matrices **********
template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 0>
struct matrix_sqrt_compute<MatrixType, 0>
{
public:
template <typename ResultType>
static void run(const MatrixType &arg, ResultType &result)
{
eigen_assert(arg.rows() == arg.cols());
explicit MatrixSquareRoot(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
// Compute Schur decomposition of arg
const RealSchur<MatrixType> schurOfA(arg);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
template <typename ResultType> void compute(ResultType &result)
{
// Compute Schur decomposition of m_A
const RealSchur<MatrixType> schurOfA(m_A);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
// Compute square root of T
MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
matrix_sqrt_quasi_triangular(T, sqrtT);
// Compute square root of T
MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.cols());
MatrixSquareRootQuasiTriangular<MatrixType>(T).compute(sqrtT);
// Compute square root of m_A
result = U * sqrtT * U.adjoint();
}
private:
const MatrixType& m_A;
// Compute square root of arg
result = U * sqrtT * U.adjoint();
}
};
// ********** Partial specialization for complex matrices **********
template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 1> : internal::noncopyable
struct matrix_sqrt_compute<MatrixType, 1>
{
public:
template <typename ResultType>
static void run(const MatrixType &arg, ResultType &result)
{
eigen_assert(arg.rows() == arg.cols());
explicit MatrixSquareRoot(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
// Compute Schur decomposition of arg
const ComplexSchur<MatrixType> schurOfA(arg);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
template <typename ResultType> void compute(ResultType &result)
{
// Compute Schur decomposition of m_A
const ComplexSchur<MatrixType> schurOfA(m_A);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
// Compute square root of T
MatrixType sqrtT;
matrix_sqrt_triangular(T, sqrtT);
// Compute square root of T
MatrixType sqrtT;
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
// Compute square root of m_A
result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
}
private:
const MatrixType& m_A;
// Compute square root of arg
result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
}
};
} // end namespace internal
/** \ingroup MatrixFunctions_Module
*
@ -432,9 +335,9 @@ template<typename Derived> class MatrixSquareRootReturnValue
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
const typename Derived::PlainObject srcEvaluated = m_src.eval();
MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
me.compute(result);
typedef typename Derived::PlainObject PlainObject;
const PlainObject srcEvaluated = m_src.eval();
internal::matrix_sqrt_compute<PlainObject>::run(srcEvaluated, result);
}
Index rows() const { return m_src.rows(); }

View File

@ -100,8 +100,6 @@ template<typename MatrixType>
void testSingular(MatrixType m, double tol)
{
const int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex;
typedef typename internal::conditional< IsComplex, MatrixSquareRootTriangular<MatrixType>,
MatrixSquareRootQuasiTriangular<MatrixType> >::type SquareRootType;
typedef typename internal::conditional<IsComplex, TriangularView<MatrixType,Upper>, const MatrixType&>::type TriangularType;
typename internal::conditional< IsComplex, ComplexSchur<MatrixType>, RealSchur<MatrixType> >::type schur;
MatrixType T;
@ -116,13 +114,13 @@ void testSingular(MatrixType m, double tol)
processTriangularMatrix<MatrixType>::run(m, T, U);
MatrixPower<MatrixType> mpow(m);
SquareRootType(T).compute(T);
T = T.sqrt();
VERIFY(mpow(0.5).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
SquareRootType(T).compute(T);
T = T.sqrt();
VERIFY(mpow(0.25).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
SquareRootType(T).compute(T);
T = T.sqrt();
VERIFY(mpow(0.125).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
}
}