diff --git a/doc/TopicLinearAlgebraDecompositions.dox b/doc/TopicLinearAlgebraDecompositions.dox
index 0a8d89b2e..1ff0549f9 100644
--- a/doc/TopicLinearAlgebraDecompositions.dox
+++ b/doc/TopicLinearAlgebraDecompositions.dox
@@ -109,7 +109,7 @@ namespace Eigen {
Soon: blocking |
- \n Singular values and eigenvalues decompositions |
+ \n Singular values and eigenvalues decompositions |
SVD |
@@ -167,7 +167,7 @@ namespace Eigen {
Yes |
Eigenvalues/vectors |
- |
- TODO Jitse answer this |
+ Average |
- |
@@ -183,7 +183,7 @@ namespace Eigen {
- |
- \n Helper decompositions |
+ \n Helper decompositions |
RealSchur |
@@ -193,13 +193,13 @@ namespace Eigen {
Yes |
- |
- |
- TODO Jitse answer this |
+ Average |
- |
ComplexSchur |
- Square and real |
+ Square |
Slow-very slow2 |
Depends on condition number |
Yes |
@@ -211,7 +211,7 @@ namespace Eigen {
UpperBidiagonalization |
- rows >= columns |
+ Rows >= columns |
Fast |
Good |
- |
@@ -250,7 +250,7 @@ namespace Eigen {
\b Notes:
- \b 1: There exist a couple of variants of the LDLT algorithm. Eigen's one produces a pure diagonal matrix, and therefore it cannot handle indefinite matrix, unlike Lapack's one which produces a block diagonal matrix.
-- \b 2: Eigenvalues and Schur decompositions rely on iterative algorithms. Their convergence speed depends on how the eigenvalues are well separated.
+- \b 2: Eigenvalues and Schur decompositions rely on iterative algorithms. Their convergence speed depends on how well the eigenvalues are separated.
\section TopicLinAlgTerminology Terminology
@@ -267,7 +267,7 @@ namespace Eigen {
In the same vein, it is negative semi-definite if \f$ v^* A v \le 0 \f$ for any non zero vector \f$ v \f$
Blocking
- Means the algorithm can work per block, whence guarantying a good scaling of the performance for large matrices.
+ Means the algorithm can work per block, whence guaranteeing a good scaling of the performance for large matrices.
Meta-unroller
Means the algorithm is automatically and explicitly unrolled for very small fixed size matrices.