Cleanup eiegnvector extraction: leverage matrix products and compile-time sizes, remove numerous useless temporaries.

This commit is contained in:
Gael Guennebaud 2016-08-23 18:14:37 +02:00
parent 00b2666853
commit 0a6a50d1b0

View File

@ -136,7 +136,8 @@ template<typename _MatrixType> class GeneralizedEigenSolver
m_betas(size),
m_valuesOkay(false),
m_vectorsOkay(false),
m_realQZ(size)
m_realQZ(size),
m_tmp(size)
{}
/** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
@ -157,7 +158,8 @@ template<typename _MatrixType> class GeneralizedEigenSolver
m_betas(A.cols()),
m_valuesOkay(false),
m_vectorsOkay(false),
m_realQZ(A.cols())
m_realQZ(A.cols()),
m_tmp(A.cols())
{
compute(A, B, computeEigenvectors);
}
@ -277,6 +279,7 @@ template<typename _MatrixType> class GeneralizedEigenSolver
VectorType m_betas;
bool m_valuesOkay, m_vectorsOkay;
RealQZ<MatrixType> m_realQZ;
ComplexVectorType m_tmp;
};
template<typename MatrixType>
@ -288,6 +291,7 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
using std::sqrt;
using std::abs;
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
Index size = A.cols();
m_valuesOkay = false;
m_vectorsOkay = false;
// Reduce to generalized real Schur form:
@ -295,25 +299,26 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
m_realQZ.compute(A, B, computeEigenvectors);
if (m_realQZ.info() == Success)
{
// Temp space for the untransformed eigenvectors
VectorType v;
ComplexVectorType cv;
// Resize storage
m_alphas.resize(A.cols());
m_betas.resize(A.cols());
if (computeEigenvectors) {
m_eivec.resize(A.cols(), A.cols());
v.resize(A.cols());
cv.resize(A.cols());
m_alphas.resize(size);
m_betas.resize(size);
if (computeEigenvectors)
{
m_eivec.resize(size,size);
m_tmp.resize(size);
}
// Grab some references
const MatrixType &mZT = m_realQZ.matrixZ().transpose();
// Aliases:
Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size);
ComplexVectorType &cv = m_tmp;
const MatrixType &mZ = m_realQZ.matrixZ();
const MatrixType &mS = m_realQZ.matrixS();
const MatrixType &mT = m_realQZ.matrixT();
Index i = 0;
while (i < A.cols())
while (i < size)
{
if (i == A.cols() - 1 || mS.coeff(i+1, i) == Scalar(0))
if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0))
{
// Real eigenvalue
m_alphas.coeffRef(i) = mS.diagonal().coeff(i);
@ -333,14 +338,11 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
const Index st = j+1;
const Index sz = i-j;
if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
{ // 2x2 block
Matrix<Scalar, 2, 1> RHS;
RHS[0] = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j-1,st,1,sz) - alpha*mT.block(j-1,st,1,sz)).sum();
RHS[1] = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum();
Matrix<Scalar, 2, 2> LHS;
LHS << beta*mS.coeffRef(j-1,j-1) - alpha*mT.coeffRef(j-1,j-1), beta*mS.coeffRef(j-1,j) - alpha*mT.coeffRef(j-1,j),
beta*mS.coeffRef(j,j-1) - alpha*mT.coeffRef(j,j-1), beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j);
v.segment(j-1,2) = LHS.partialPivLu().solve(RHS);
{
// 2x2 block
Matrix<Scalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) );
Matrix<Scalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
j--;
}
else
@ -349,7 +351,8 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
}
}
}
m_eivec.col(i).real() = (mZT * v).normalized();
m_eivec.col(i).real().noalias() = mZ.transpose() * v;
m_eivec.col(i).real().normalize();
m_eivec.col(i).imag().setConstant(0);
}
++i;
@ -376,31 +379,32 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
if (computeEigenvectors) {
// Compute eigenvector in position (i+1) and then position (i) is just the conjugate
cv.setConstant(ComplexScalar(0.0, 0.0));
cv.coeffRef(i+1) = ComplexScalar(1.0, 0.0);
cv.setZero();
cv.coeffRef(i+1) = Scalar(1.0);
cv.coeffRef(i) = -(beta*mS.coeffRef(i,i+1) - alpha*mT.coeffRef(i,i+1)) / (beta*mS.coeffRef(i,i) - alpha*mT.coeffRef(i,i));
for (Index j = i-1; j >= 0; j--) {
for (Index j = i-1; j >= 0; j--)
{
const Index st = j+1;
const Index sz = i+1-j;
if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) { // 2x2 block
Matrix<ComplexScalar, 2, 1> RHS;
RHS[0] = -cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j-1,st,1,sz) - alpha*mT.block(j-1,st,1,sz)).sum();
RHS[1] = -cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum();
Matrix<ComplexScalar, 2, 2> LHS;
LHS << beta*mS.coeffRef(j-1,j-1) - alpha*mT.coeffRef(j-1,j-1), beta*mS.coeffRef(j-1,j) - alpha*mT.coeffRef(j-1,j),
beta*mS.coeffRef(j,j-1) - alpha*mT.coeffRef(j,j-1), beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j);
cv.segment(j-1,2) = LHS.partialPivLu().solve(RHS);
if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
{
// 2x2 block
Matrix<ComplexScalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) );
Matrix<ComplexScalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
j--;
} else {
cv.coeffRef(j) = -cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j));
}
}
m_eivec.col(i+1) = (mZT * cv).normalized();
m_eivec.col(i+1).noalias() = (mZ.transpose() * cv);
m_eivec.col(i+1).normalize();
m_eivec.col(i) = m_eivec.col(i+1).conjugate();
}
i += 2;
}
}
m_valuesOkay = true;
m_vectorsOkay = computeEigenvectors;
}