Make igamma and igammac work correctly.

This required replacing ::abs with std::abs.
Modified some unit tests.
This commit is contained in:
Eugene Brevdo 2016-03-04 21:12:10 -08:00
parent 7ea35bfa1c
commit 0b9e0abc96
2 changed files with 119 additions and 64 deletions

View File

@ -296,7 +296,8 @@ struct digamma_impl {
if (x <= zero) {
negative = one;
q = x;
p = ::floor(q);
using std::floor;
p = floor(q);
if (p == q) {
return maxnum;
}
@ -309,7 +310,8 @@ struct digamma_impl {
p += one;
nz = q - p;
}
nz = m_pi / ::tan(m_pi * nz);
using std::tan;
nz = m_pi / tan(m_pi * nz);
}
else {
nz = zero;
@ -327,7 +329,8 @@ struct digamma_impl {
y = digamma_impl_maybe_poly<Scalar>::run(s);
y = ::log(s) - (half / s) - y - w;
using std::log;
y = log(s) - (half / s) - y - w;
return (negative) ? y - nz : y;
}
@ -426,6 +429,39 @@ struct igammac_impl {
template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
template <typename Scalar>
struct igamma_helper {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
};
template <>
struct igamma_helper<float> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static float machep() {
return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static float big() {
// use epsneg (1.0 - epsneg == 1.0)
return 1.0 / (NumTraits<float>::epsilon() / 2);
}
};
template <>
struct igamma_helper<double> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static double machep() {
return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static double big() {
return 1.0 / NumTraits<double>::epsilon();
}
};
template <typename Scalar>
struct igammac_impl {
EIGEN_DEVICE_FUNC
@ -487,26 +523,35 @@ struct igammac_impl {
const Scalar zero = 0;
const Scalar one = 1;
const Scalar two = 2;
const Scalar machep = NumTraits<Scalar>::epsilon();
const Scalar machep = igamma_helper<Scalar>::machep();
const Scalar maxlog = ::log(NumTraits<Scalar>::highest());
const Scalar big = one / machep;
const Scalar big = igamma_helper<Scalar>::big();
const Scalar biginv = 1 / big;
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
Scalar ans, ax, c, yc, r, t, y, z;
Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
if ((x <= zero) || ( a <= zero)) {
return one;
if ((x < zero) || ( a <= zero)) {
// domain error
return nan;
}
if ((x < one) || (x < a)) {
return (one - igamma_impl<Scalar>::run(a, x));
}
ax = a * ::log(x) - x - lgamma_impl<Scalar>::run(a);
if( ax < -maxlog ) { // underflow
using std::isinf;
if ((isinf)(x)) return zero;
/* Compute x**a * exp(-x) / gamma(a) */
using std::log;
ax = a * log(x) - x - lgamma_impl<Scalar>::run(a);
if (ax < -maxlog) { // underflow
return zero;
}
ax = ::exp(ax);
using std::exp;
ax = exp(ax);
// continued fraction
y = one - a;
@ -516,35 +561,36 @@ struct igammac_impl {
qkm2 = x;
pkm1 = x + one;
qkm1 = z * x;
ans = pkm1/qkm1;
ans = pkm1 / qkm1;
using std::abs;
do {
c += one;
y += one;
z += two;
yc = y * c;
pk = pkm1 * z - pkm2 * yc;
qk = qkm1 * z - qkm2 * yc;
if( qk != zero ) {
r = pk/qk;
t = ::abs( (ans - r)/r );
pk = pkm1 * z - pkm2 * yc;
qk = qkm1 * z - qkm2 * yc;
if (qk != zero) {
r = pk / qk;
t = abs((ans - r) / r);
ans = r;
} else {
} else {
t = one;
}
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if (::abs(pk) > big) {
pkm2 *= machep;
pkm1 *= machep;
qkm2 *= machep;
qkm1 *= machep;
if (abs(pk) > big) {
pkm2 *= biginv;
pkm1 *= biginv;
qkm2 *= biginv;
qkm1 *= biginv;
}
} while( t > machep );
} while (t > machep);
return ( ans * ax );
return (ans * ax);
}
};
@ -639,26 +685,31 @@ struct igamma_impl {
*/
const Scalar zero = 0;
const Scalar one = 1;
const Scalar machep = NumTraits<Scalar>::epsilon();
const Scalar machep = igamma_helper<Scalar>::machep();
const Scalar maxlog = ::log(NumTraits<Scalar>::highest());
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
double ans, ax, c, r;
if( (x <= zero) || ( a <= zero) ) {
return zero;
if (x == zero) return zero;
if ((x < zero) || ( a <= zero)) { // domain error
return nan;
}
if( (x > one) && (x > a ) ) {
return (one - igammac_impl<Scalar>::run(a,x));
if ((x > one) && (x > a)) {
return (one - igammac_impl<Scalar>::run(a, x));
}
/* Compute x**a * exp(-x) / gamma(a) */
ax = a * ::log(x) - x - lgamma_impl<Scalar>::run(a);
if( ax < -maxlog ) {
using std::log;
ax = a * log(x) - x - lgamma_impl<Scalar>::run(a);
if (ax < -maxlog) {
// underflow
return zero;
}
ax = ::exp(ax);
using std::exp;
ax = exp(ax);
/* power series */
r = a;
@ -669,9 +720,9 @@ struct igamma_impl {
r += one;
c *= x/r;
ans += c;
} while( c/ans > machep );
} while (c/ans > machep);
return( ans * ax/a );
return (ans * ax / a);
}
};

View File

@ -331,41 +331,45 @@ template<typename ArrayType> void array_real(const ArrayType& m)
VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)),
std::numeric_limits<RealScalar>::infinity());
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(10000.5)};
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(10000.5)};
Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
// location i*6+j corresponds to a_s[i], x_s[j].
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
Scalar igamma_s[][6] = {
{0.0, 0.0, 0.0, 0.0, 0.0, 0.0},
{0.0, 0.6321205588285578, 0.7768698398515702, 0.9816843611112658,
9.999500016666262e-05, 1.0},
{0.0, 0.4275932955291202, 0.608374823728911, 0.9539882943107686,
7.522076445089201e-07, 1.0},
{0.0, 0.01898815687615381, 0.06564245437845008, 0.5665298796332909,
4.166333347221828e-18, 1.0},
{0.0, 0.9999780593618628, 0.9999899967080838, 0.9999996219837988,
0.9991370418689945, 1.0},
{0.0, 0.0, 0.0, 0.0, 0.0, 0.5013297751014064}};
Scalar igammac_s[][6] = {
{1.0, 1.0, 1.0, 1.0, 1.0, 1.0},
{1.0, 0.36787944117144233, 0.22313016014842982,
0.018315638888734182, 0.9999000049998333, 0.0},
{1.0, 0.5724067044708798, 0.3916251762710878,
0.04601170568923136, 0.9999992477923555, 0.0},
{1.0, 0.9810118431238462, 0.9343575456215499,
0.4334701203667089, 1.0, 0.0},
{1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
3.7801620118431334e-07, 0.0008629581310054535, 0.0},
{1.0, 1.0, 1.0, 1.0, 1.0, 0.49867022490946517}};
Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan},
{0.0, 0.6321205588285578, 0.7768698398515702,
0.9816843611112658, 9.999500016666262e-05, 1.0},
{0.0, 0.4275932955291202, 0.608374823728911,
0.9539882943107686, 7.522076445089201e-07, 1.0},
{0.0, 0.01898815687615381, 0.06564245437845008,
0.5665298796332909, 4.166333347221828e-18, 1.0},
{0.0, 0.9999780593618628, 0.9999899967080838,
0.9999996219837988, 0.9991370418689945, 1.0},
{0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}};
Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan},
{1.0, 0.36787944117144233, 0.22313016014842982,
0.018315638888734182, 0.9999000049998333, 0.0},
{1.0, 0.5724067044708798, 0.3916251762710878,
0.04601170568923136, 0.9999992477923555, 0.0},
{1.0, 0.9810118431238462, 0.9343575456215499,
0.4334701203667089, 1.0, 0.0},
{1.0, 2.1940638138146658e-05, 1.0003291916285e-05,
3.7801620118431334e-07, 0.0008629581310054535,
0.0},
{1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}};
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
//std::cout << numext::igamma(a_s[i], x_s[j]) << " vs. " << igamma_s[i][j] << std::endl;
//std::cout << numext::igammac(a_s[i], x_s[j]) << " c.vs. " <<
//igammac_s[i][j] << std::endl;
std::cout << a_s[i] << ", " << x_s[j] << std::endl;
VERIFY_IS_APPROX(numext::igamma(a_s[i], x_s[j]), igamma_s[i][j]);
VERIFY_IS_APPROX(numext::igammac(a_s[i], x_s[j]), igammac_s[i][j]);
if ((std::isnan)(igamma_s[i][j])) {
VERIFY((std::isnan)(numext::igamma(a_s[i], x_s[j])));
} else {
VERIFY_IS_APPROX(numext::igamma(a_s[i], x_s[j]), igamma_s[i][j]);
}
if ((std::isnan)(igammac_s[i][j])) {
VERIFY((std::isnan)(numext::igammac(a_s[i], x_s[j])));
} else {
VERIFY_IS_APPROX(numext::igammac(a_s[i], x_s[j]), igammac_s[i][j]);
}
}
}
}