mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-24 02:29:33 +08:00
Merge upstream.
This commit is contained in:
commit
0bb61b04ca
@ -1,4 +1,6 @@
|
||||
Each benchmark comes in 2 flavors: one that runs on CPU, and one that runs on GPU.
|
||||
The tensor benchmark suite is made of several parts.
|
||||
|
||||
The first part is a generic suite, in which each benchmark comes in 2 flavors: one that runs on CPU, and one that runs on GPU.
|
||||
|
||||
To compile the floating point CPU benchmarks, simply call:
|
||||
g++ tensor_benchmarks_cpu.cc benchmark_main.cc -I ../../ -std=c++11 -O3 -DNDEBUG -pthread -mavx -o benchmarks_cpu
|
||||
@ -6,7 +8,8 @@ g++ tensor_benchmarks_cpu.cc benchmark_main.cc -I ../../ -std=c++11 -O3 -DNDEBUG
|
||||
To compile the floating point GPU benchmarks, simply call:
|
||||
nvcc tensor_benchmarks_gpu.cu benchmark_main.cc -I ../../ -std=c++11 -O2 -DNDEBUG -arch compute_35 -o benchmarks_gpu
|
||||
|
||||
|
||||
To compile the half float GPU benchmarks, simply call the command line below. You'll need a recent GPU that supports compute capability 5.3 or higher to run them and nvcc 7.5 or higher to compile the code.
|
||||
We also provide a version of the generic GPU tensor benchmarks that uses half floats (aka fp16) instead of regular floats. To compile these benchmarks, simply call the command line below. You'll need a recent GPU that supports compute capability 5.3 or higher to run them and nvcc 7.5 or higher to compile the code.
|
||||
nvcc tensor_benchmarks_fp16_gpu.cu benchmark_main.cc -I ../../ -std=c++11 -O2 -DNDEBUG -arch compute_53 -o benchmarks_fp16_gpu
|
||||
|
||||
last but not least, we also provide a suite of benchmarks to measure the scalability of the contraction code on CPU. To compile these benchmarks, call
|
||||
g++ contraction_benchmarks_cpu.cc benchmark_main.cc -I ../../ -std=c++11 -O3 -DNDEBUG -pthread -mavx -o benchmarks_cpu
|
||||
|
39
bench/tensors/contraction_benchmarks_cpu.cc
Normal file
39
bench/tensors/contraction_benchmarks_cpu.cc
Normal file
@ -0,0 +1,39 @@
|
||||
#define EIGEN_USE_THREADS
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "tensor_benchmarks.h"
|
||||
|
||||
#define CREATE_THREAD_POOL(threads) \
|
||||
Eigen::ThreadPool pool(threads); \
|
||||
Eigen::ThreadPoolDevice device(&pool, threads);
|
||||
|
||||
|
||||
// Contractions for number of threads ranging from 1 to 32
|
||||
// Dimensions are Rows, Cols, Depth
|
||||
#define BM_ContractionCPU(D1, D2, D3) \
|
||||
static void BM_##Contraction##_##D1##x##D2##x##D3(int iters, int Threads) { \
|
||||
StopBenchmarkTiming(); \
|
||||
CREATE_THREAD_POOL(Threads); \
|
||||
BenchmarkSuite<Eigen::ThreadPoolDevice, float> suite(device, D1, D2, D3); \
|
||||
suite.contraction(iters); \
|
||||
} \
|
||||
BENCHMARK_RANGE(BM_##Contraction##_##D1##x##D2##x##D3, 1, 32);
|
||||
|
||||
|
||||
// Vector Matrix and Matrix Vector products
|
||||
BM_ContractionCPU(1, 2000, 500);
|
||||
BM_ContractionCPU(2000, 1, 500);
|
||||
|
||||
// Various skinny matrices
|
||||
BM_ContractionCPU(250, 3, 512);
|
||||
BM_ContractionCPU(1500, 3, 512);
|
||||
|
||||
BM_ContractionCPU(512, 800, 4);
|
||||
BM_ContractionCPU(512, 80, 800);
|
||||
BM_ContractionCPU(512, 80, 13522);
|
||||
BM_ContractionCPU(1, 80, 13522);
|
||||
|
||||
BM_ContractionCPU(3200, 512, 4);
|
||||
BM_ContractionCPU(3200, 512, 80);
|
||||
BM_ContractionCPU(3200, 80, 512);
|
@ -525,7 +525,7 @@ template<typename ArrayType> void array_complex(const ArrayType& m)
|
||||
|
||||
// scalar by array division
|
||||
Scalar s1 = internal::random<Scalar>();
|
||||
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
|
||||
const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon());
|
||||
s1 += Scalar(tiny);
|
||||
m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
|
||||
VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
|
||||
|
@ -254,6 +254,14 @@ struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Devi
|
||||
|
||||
EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
|
||||
costPerCoeff(bool vectorized) const {
|
||||
const double compute_cost = 1.0 +
|
||||
(m_return_dim < 0 ? 0.0 : (TensorOpCost::ModCost<Index>() + TensorOpCost::DivCost<Index>()));
|
||||
return m_orig_impl.costPerCoeff(vectorized) +
|
||||
m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost);
|
||||
}
|
||||
|
||||
private:
|
||||
EIGEN_DEVICE_FUNC void gen_strides(const InputDimensions& dims, StrideDims& strides) {
|
||||
if (m_return_dim < 0) {
|
||||
|
@ -106,7 +106,7 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
||||
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
IsAligned = true,
|
||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||
RawAccess = false
|
||||
@ -118,7 +118,7 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
||||
// The broadcasting op doesn't change the rank of the tensor. One can't broadcast a scalar
|
||||
// and store the result in a scalar. Instead one should reshape the scalar into a a N-D
|
||||
// tensor with N >= 1 of 1 element first and then broadcast.
|
||||
EIGEN_STATIC_ASSERT(NumDims > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
const InputDimensions& input_dims = m_impl.dimensions();
|
||||
const Broadcast& broadcast = op.broadcast();
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
@ -247,7 +247,7 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
|
||||
|
||||
const Index originalIndex = index;
|
||||
@ -299,7 +299,7 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
|
||||
|
||||
const Index originalIndex = index;
|
||||
@ -354,11 +354,11 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
||||
if (NumDims > 0) {
|
||||
for (int i = NumDims - 1; i > 0; --i) {
|
||||
compute_cost += TensorOpCost::DivCost<Index>();
|
||||
if (internal::index_statically_eq<Broadcast>()(i, 1)) {
|
||||
if (internal::index_statically_eq<Broadcast>(i, 1)) {
|
||||
compute_cost +=
|
||||
TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
|
||||
} else {
|
||||
if (!internal::index_statically_eq<InputDimensions>()(i, 1)) {
|
||||
if (!internal::index_statically_eq<InputDimensions>(i, 1)) {
|
||||
compute_cost += TensorOpCost::MulCost<Index>() +
|
||||
TensorOpCost::ModCost<Index>() +
|
||||
TensorOpCost::AddCost<Index>();
|
||||
|
@ -152,7 +152,7 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_impl(op.expression(), device), m_dim(op.dim()), m_device(device)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(NumInputDims >= 1, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
eigen_assert(NumInputDims > m_dim.actualDim());
|
||||
|
||||
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
|
||||
@ -202,7 +202,7 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
|
||||
|
||||
if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
|
||||
@ -341,7 +341,7 @@ struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
|
||||
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
void writePacket(Index index, const PacketReturnType& x)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
|
||||
if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == 0) ||
|
||||
(static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == NumInputDims-1)) {
|
||||
|
@ -14,6 +14,8 @@
|
||||
#ifdef EIGEN_USE_THREADS
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
#ifdef EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
namespace internal {
|
||||
|
||||
template<typename LhsScalar, typename LhsMapper, typename Index>
|
||||
@ -52,7 +54,7 @@ struct packRhsAndKernelArg {
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
#endif // EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
|
||||
template<typename Indices, typename LeftArgType, typename RightArgType>
|
||||
struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgType>, ThreadPoolDevice> :
|
||||
@ -110,6 +112,627 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
TensorEvaluator(const XprType& op, const Device& device) :
|
||||
Base(op, device) {}
|
||||
|
||||
#ifndef EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous,
|
||||
bool rhs_inner_dim_reordered, int Alignment>
|
||||
void evalProduct(Scalar* buffer) const {
|
||||
typedef
|
||||
typename internal::remove_const<typename EvalLeftArgType::Scalar>::type
|
||||
LhsScalar;
|
||||
typedef
|
||||
typename internal::remove_const<typename EvalRightArgType::Scalar>::type
|
||||
RhsScalar;
|
||||
typedef typename internal::gebp_traits<LhsScalar, RhsScalar> Traits;
|
||||
typedef TensorEvaluator<EvalLeftArgType, Device> LeftEvaluator;
|
||||
typedef TensorEvaluator<EvalRightArgType, Device> RightEvaluator;
|
||||
typedef internal::TensorContractionInputMapper<
|
||||
LhsScalar, Index, internal::Lhs, LeftEvaluator, left_nocontract_t,
|
||||
contract_t, internal::packet_traits<LhsScalar>::size,
|
||||
lhs_inner_dim_contiguous, false, Unaligned>
|
||||
LhsMapper;
|
||||
typedef internal::TensorContractionInputMapper<
|
||||
RhsScalar, Index, internal::Rhs, RightEvaluator, right_nocontract_t,
|
||||
contract_t, internal::packet_traits<RhsScalar>::size,
|
||||
rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned>
|
||||
RhsMapper;
|
||||
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
|
||||
typedef internal::gemm_pack_lhs<LhsScalar, Index,
|
||||
typename LhsMapper::SubMapper, Traits::mr,
|
||||
Traits::LhsProgress, ColMajor>
|
||||
LhsPacker;
|
||||
typedef internal::gemm_pack_rhs<
|
||||
RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor>
|
||||
RhsPacker;
|
||||
typedef internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper,
|
||||
Traits::mr, Traits::nr, false, false>
|
||||
GebpKernel;
|
||||
|
||||
const Index m = this->m_i_size;
|
||||
const Index n = this->m_j_size;
|
||||
const Index k = this->m_k_size;
|
||||
if (m == 0 || n == 0 || k == 0) return;
|
||||
|
||||
// Compute a set of algorithm parameters:
|
||||
// - kernel block sizes (bm, bn, bk)
|
||||
// - task grain sizes (number of kernels executed per task: gm, gn)
|
||||
// - number of threads
|
||||
// - sharding by row/column
|
||||
// - parallel packing or first lhs then rhs
|
||||
// and some derived parameters:
|
||||
// - number of tasks (nm, nn, nk)
|
||||
// - number of kernels (nm0, nn0)
|
||||
// Unfortunately, all these parameters are tightly interdependent.
|
||||
// So in some cases we first compute approximate values, then compute other
|
||||
// values based on these approximations and then refine the approximations.
|
||||
|
||||
// There are lots of heuristics here. There is some reasoning behind them,
|
||||
// but ultimately they are just tuned on contraction benchmarks for
|
||||
// different input configurations, thread counts and instruction sets.
|
||||
// So feel free to question any of them.
|
||||
|
||||
// Compute whether we want to shard by row or by column.
|
||||
// This is a first approximation, it will be refined later. Since we don't
|
||||
// know number of threads yet we use 2, because what's we are most
|
||||
// interested in at this point is whether it makes sense to use
|
||||
// parallelization at all or not.
|
||||
bool shard_by_col = shardByCol(m, n, 2);
|
||||
|
||||
// First approximation of kernel blocking sizes.
|
||||
// Again, we don't know number of threads yet, so we use 2.
|
||||
Index bm, bn, bk;
|
||||
if (shard_by_col) {
|
||||
internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
|
||||
internal::ShardByCol>
|
||||
blocking(k, m, n, 2);
|
||||
bm = blocking.mc();
|
||||
bn = blocking.nc();
|
||||
bk = blocking.kc();
|
||||
} else {
|
||||
internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
|
||||
internal::ShardByRow>
|
||||
blocking(k, m, n, 2);
|
||||
bm = blocking.mc();
|
||||
bn = blocking.nc();
|
||||
bk = blocking.kc();
|
||||
}
|
||||
|
||||
// Compute optimal number of threads.
|
||||
// Note: we use bk instead of k here because we are interested in amount of
|
||||
// _parallelizable_ computations, and computations are not parallelizable
|
||||
// across k dimension.
|
||||
const TensorOpCost cost =
|
||||
contractionCost(m, n, bm, bn, bk, shard_by_col, false);
|
||||
Index num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
|
||||
static_cast<double>(n) * m, cost, this->m_device.numThreads());
|
||||
|
||||
// TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
|
||||
// model is not tuned. Remove this when the cost model is tuned.
|
||||
if (n == 1) num_threads = 1;
|
||||
|
||||
if (num_threads == 1) {
|
||||
// The single-threaded algorithm should be faster in this case.
|
||||
if (n == 1)
|
||||
this->template evalGemv<lhs_inner_dim_contiguous,
|
||||
rhs_inner_dim_contiguous,
|
||||
rhs_inner_dim_reordered, Alignment>(buffer);
|
||||
else
|
||||
this->template evalGemm<lhs_inner_dim_contiguous,
|
||||
rhs_inner_dim_contiguous,
|
||||
rhs_inner_dim_reordered, Alignment>(buffer);
|
||||
return;
|
||||
}
|
||||
|
||||
// Now that we know number of threads, recalculate sharding and blocking.
|
||||
shard_by_col = shardByCol(m, n, num_threads);
|
||||
if (shard_by_col) {
|
||||
internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
|
||||
internal::ShardByCol>
|
||||
blocking(k, m, n, num_threads);
|
||||
bm = blocking.mc();
|
||||
bn = blocking.nc();
|
||||
bk = blocking.kc();
|
||||
} else {
|
||||
internal::TensorContractionBlocking<LhsMapper, RhsMapper, Index,
|
||||
internal::ShardByRow>
|
||||
blocking(k, m, n, num_threads);
|
||||
bm = blocking.mc();
|
||||
bn = blocking.nc();
|
||||
bk = blocking.kc();
|
||||
}
|
||||
|
||||
// Number of kernels for each dimension.
|
||||
Index nm0 = divup(m, bm);
|
||||
Index nn0 = divup(n, bn);
|
||||
Index nk = divup(k, bk);
|
||||
|
||||
// Calculate task grain size (number of kernels executed per task).
|
||||
// This task size coarsening serves two purposes:
|
||||
// 1. It reduces per-task overheads including synchronization overheads.
|
||||
// 2. It allows to use caches better (reuse the same packed rhs in several
|
||||
// consecutive kernels).
|
||||
Index gm = 1;
|
||||
Index gn = 1;
|
||||
// If we are sharding by column, then we prefer to reduce rows first.
|
||||
if (shard_by_col) {
|
||||
gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
|
||||
gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
|
||||
} else {
|
||||
gn = coarsenN(m, n, bm, bn, bk, gm, num_threads, shard_by_col);
|
||||
gm = coarsenM(m, n, bm, bn, bk, gn, num_threads, shard_by_col);
|
||||
}
|
||||
// Number of tasks in each dimension.
|
||||
Index nm = divup(nm0, gm);
|
||||
Index nn = divup(nn0, gn);
|
||||
|
||||
// Last by not least, decide whether we want to issue both lhs and rhs
|
||||
// packing in parallel; or issue lhs packing first, and then issue rhs
|
||||
// packing when lhs packing completes (for !shard_by_col lhs and rhs are
|
||||
// swapped). Parallel packing allows more parallelism (for both packing and
|
||||
// kernels), while sequential packing provides better locality (once
|
||||
// a thread finishes rhs packing it proceed to kernels with that rhs).
|
||||
// First, we are interested in parallel packing if there are few tasks.
|
||||
bool parallel_pack = num_threads >= nm * nn;
|
||||
// Also do parallel packing if all data fits into L2$.
|
||||
if (m * bk * sizeof(LhsScalar) + n * bk * sizeof(RhsScalar) <=
|
||||
l2CacheSize() * num_threads)
|
||||
parallel_pack = true;
|
||||
// But don't do it if we will use each rhs only once. Locality seems to be
|
||||
// more important in this case.
|
||||
if ((shard_by_col ? nm : nn) == 1) parallel_pack = false;
|
||||
|
||||
LhsMapper lhs(this->m_leftImpl, this->m_left_nocontract_strides,
|
||||
this->m_i_strides, this->m_left_contracting_strides,
|
||||
this->m_k_strides);
|
||||
|
||||
RhsMapper rhs(this->m_rightImpl, this->m_right_nocontract_strides,
|
||||
this->m_j_strides, this->m_right_contracting_strides,
|
||||
this->m_k_strides);
|
||||
|
||||
Context<LhsPacker, RhsPacker, GebpKernel, LhsMapper, RhsMapper,
|
||||
OutputMapper>(this->m_device, num_threads, lhs, rhs, buffer, m, n,
|
||||
k, bm, bn, bk, nm, nn, nk, gm, gn, nm0, nn0,
|
||||
shard_by_col, parallel_pack)
|
||||
.run();
|
||||
}
|
||||
|
||||
// Context coordinates a single parallel gemm operation.
|
||||
template <typename LhsPacker, typename RhsPacker, typename GebpKernel,
|
||||
typename LhsMapper, typename RhsMapper, typename OutputMapper>
|
||||
class Context {
|
||||
public:
|
||||
Context(const Device& device, int num_threads, LhsMapper& lhs,
|
||||
RhsMapper& rhs, Scalar* buffer, Index m, Index n, Index k, Index bm,
|
||||
Index bn, Index bk, Index nm, Index nn, Index nk, Index gm,
|
||||
Index gn, Index nm0, Index nn0, bool shard_by_col,
|
||||
bool parallel_pack)
|
||||
: device_(device),
|
||||
lhs_(lhs),
|
||||
rhs_(rhs),
|
||||
buffer_(buffer),
|
||||
output_(buffer, m),
|
||||
num_threads_(num_threads),
|
||||
shard_by_col_(shard_by_col),
|
||||
parallel_pack_(parallel_pack),
|
||||
m_(m),
|
||||
n_(n),
|
||||
k_(k),
|
||||
bm_(bm),
|
||||
bn_(bn),
|
||||
bk_(bk),
|
||||
nm_(nm),
|
||||
nn_(nn),
|
||||
nk_(nk),
|
||||
gm_(gm),
|
||||
gn_(gn),
|
||||
nm0_(nm0),
|
||||
nn0_(nn0)
|
||||
{
|
||||
for (Index x = 0; x < P; x++) {
|
||||
// Normal number of notifications for k slice switch is
|
||||
// nm_ + nn_ + nm_ * nn_. However, first P - 1 slices will receive only
|
||||
// nm_ + nn_ notifications, because they will not receive notifications
|
||||
// from preceeding kernels.
|
||||
state_switch_[x] =
|
||||
x == 0
|
||||
? 1
|
||||
: (parallel_pack_ ? nn_ + nm_ : (shard_by_col_ ? nn_ : nm_)) +
|
||||
(x == P - 1 ? nm_ * nn_ : 0);
|
||||
state_packing_ready_[x] =
|
||||
parallel_pack_ ? 0 : (shard_by_col_ ? nm_ : nn_);
|
||||
state_kernel_[x] = new std::atomic<uint8_t>*[nm_];
|
||||
for (Index m = 0; m < nm_; m++) {
|
||||
state_kernel_[x][m] = new std::atomic<uint8_t>[nn_];
|
||||
// Kernels generally receive 3 notifications (previous kernel + 2
|
||||
// packing), but the first slice won't get notifications from previous
|
||||
// kernels.
|
||||
for (Index n = 0; n < nn_; n++)
|
||||
state_kernel_[x][m][n].store(
|
||||
(x == 0 ? 0 : 1) + (parallel_pack_ ? 2 : 1),
|
||||
std::memory_order_relaxed);
|
||||
}
|
||||
}
|
||||
|
||||
// Allocate memory for packed rhs/lhs matrices.
|
||||
size_t align = numext::maxi(EIGEN_MAX_ALIGN_BYTES, 1);
|
||||
size_t lhs_size =
|
||||
divup<size_t>(bm_ * bk_ * sizeof(LhsScalar), align) * align;
|
||||
size_t rhs_size =
|
||||
divup<size_t>(bn_ * bk_ * sizeof(RhsScalar), align) * align;
|
||||
packed_mem_ = static_cast<char*>(internal::aligned_malloc(
|
||||
(nm0_ * lhs_size + nn0_ * rhs_size) * std::min<size_t>(nk_, P - 1)));
|
||||
char* mem = static_cast<char*>(packed_mem_);
|
||||
for (Index x = 0; x < numext::mini<size_t>(nk_, P - 1); x++) {
|
||||
packed_lhs_[x].resize(nm0_);
|
||||
for (Index m = 0; m < nm0_; m++) {
|
||||
packed_lhs_[x][m] = reinterpret_cast<LhsScalar*>(mem);
|
||||
mem += lhs_size;
|
||||
}
|
||||
packed_rhs_[x].resize(nn0_);
|
||||
for (Index n = 0; n < nn0_; n++) {
|
||||
packed_rhs_[x][n] = reinterpret_cast<RhsScalar*>(mem);
|
||||
mem += rhs_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~Context() {
|
||||
for (Index x = 0; x < P; x++) {
|
||||
for (Index m = 0; m < nm_; m++) delete[] state_kernel_[x][m];
|
||||
delete[] state_kernel_[x];
|
||||
}
|
||||
internal::aligned_free(packed_mem_);
|
||||
}
|
||||
|
||||
void run() {
|
||||
// Kick off packing of the first slice.
|
||||
signal_switch(0, 1);
|
||||
// Wait for overall completion.
|
||||
// TODO(dvyukov): this wait can lead to deadlock.
|
||||
// If nthreads contractions are concurrently submitted from worker
|
||||
// threads, this wait will block all worker threads and the system will
|
||||
// deadlock.
|
||||
done_.Wait();
|
||||
}
|
||||
|
||||
private:
|
||||
Notification done_;
|
||||
const Device& device_;
|
||||
LhsMapper& lhs_;
|
||||
RhsMapper& rhs_;
|
||||
Scalar* const buffer_;
|
||||
OutputMapper output_;
|
||||
const int num_threads_;
|
||||
const bool shard_by_col_;
|
||||
const bool parallel_pack_;
|
||||
// Matrix sizes.
|
||||
const Index m_;
|
||||
const Index n_;
|
||||
const Index k_;
|
||||
// Block sizes.
|
||||
const Index bm_;
|
||||
const Index bn_;
|
||||
const Index bk_;
|
||||
// Number of tasks.
|
||||
const Index nm_;
|
||||
const Index nn_;
|
||||
const Index nk_;
|
||||
// Task grain sizes (number of kernels executed per task).
|
||||
const Index gm_;
|
||||
const Index gn_;
|
||||
// Number of blocks (this is different from ni_/nn_ because of task size
|
||||
// coarsening).
|
||||
const Index nm0_;
|
||||
const Index nn0_;
|
||||
|
||||
// Parallelization strategy.
|
||||
//
|
||||
// Blocks related to the same k block can run in parallel because they write
|
||||
// to different output blocks. So we parallelize within k slices, this
|
||||
// gives us parallelism level of m x n. Before we can start any kernels
|
||||
// related to k-th slice, we need to issue m lhs packing tasks and n rhs
|
||||
// packing tasks.
|
||||
//
|
||||
// However, there is a bottleneck when we are finishing kernels for k-th
|
||||
// slice (at the very end there is only 1 runnable kernel). To mitigate this
|
||||
// bottleneck we allow kernels from k-th and k+1-th slices to run in
|
||||
// parallel. Note that (m, n, k) and (m, n, k+1) kernels write to the same
|
||||
// output block, so they must not run in parallel.
|
||||
//
|
||||
// This gives us the following dependency graph.
|
||||
// On each k slice we have m x n kernel tasks, m lhs paking tasks and n rhs
|
||||
// packing tasks.
|
||||
// Kernel (m, n, k) can start when:
|
||||
// - kernel (m, n, k-1) has finished
|
||||
// - lhs packing (m, k) has finished
|
||||
// - rhs packing (n, k) has finished
|
||||
// Lhs/rhs packing can start when:
|
||||
// - all k-1 packing has finished (artificially imposed to limit amount of
|
||||
// parallel packing)
|
||||
//
|
||||
// On top of that we limit runnable tasks to two consecutive k slices.
|
||||
// This is done to limit amount of memory we need for packed lhs/rhs
|
||||
// (for each k slice we need m*bk + n*bk memory in packed_lhs_/packed_rhs_).
|
||||
//
|
||||
// state_switch_ tracks when we are ready to switch to the next k slice.
|
||||
// state_kernel_[m][n] tracks when we are ready to kick off kernel (m, n).
|
||||
// These variable are rolling over 3 consecutive k slices: first two we are
|
||||
// actively executing + one to track completion of kernels in the second
|
||||
// slice.
|
||||
static const Index P = 3;
|
||||
void* packed_mem_;
|
||||
std::vector<LhsScalar*> packed_lhs_[P - 1];
|
||||
std::vector<RhsScalar*> packed_rhs_[P - 1];
|
||||
std::atomic<uint8_t>** state_kernel_[P];
|
||||
// state_switch_ is frequently modified by worker threads, while other
|
||||
// fields are read-only after constructor. Let's move it to a separate cache
|
||||
// line to reduce cache-coherency traffic.
|
||||
char pad_[128];
|
||||
std::atomic<Index> state_packing_ready_[P];
|
||||
std::atomic<Index> state_switch_[P];
|
||||
|
||||
void pack_lhs(Index m, Index k) {
|
||||
const Index mend = m * gm_ + gm(m);
|
||||
for (Index m1 = m * gm_; m1 < mend; m1++)
|
||||
LhsPacker()(packed_lhs_[k % (P - 1)][m1],
|
||||
lhs_.getSubMapper(m1 * bm_, k * bk_), bk(k), bm(m1));
|
||||
|
||||
if (!parallel_pack_ && shard_by_col_) {
|
||||
signal_packing(k);
|
||||
} else {
|
||||
signal_switch(k + 1);
|
||||
for (Index n = nn_ - 1; n >= 0; n--) signal_kernel(m, n, k, n == 0);
|
||||
}
|
||||
}
|
||||
|
||||
void pack_rhs(Index n, Index k) {
|
||||
const Index nend = n * gn_ + gn(n);
|
||||
for (Index n1 = n * gn_; n1 < nend; n1++) {
|
||||
if (k == 0) {
|
||||
// Zero the output memory in parallel.
|
||||
// On 10000x2x10000 mm zeroing can easily take half of time.
|
||||
// Zero (bn x m) row. Safe to do here because all kernels that will
|
||||
// write to this memory depend on completion of this task.
|
||||
// Note: don't call device_.memset() here. device_.memset() blocks on
|
||||
// thread pool worker thread, which can lead to underutilization and
|
||||
// deadlocks.
|
||||
memset(buffer_ + n1 * bn_ * m_, 0, bn(n1) * m_ * sizeof(Scalar));
|
||||
}
|
||||
RhsPacker()(packed_rhs_[k % (P - 1)][n1],
|
||||
rhs_.getSubMapper(k * bk_, n1 * bn_), bk(k), bn(n1));
|
||||
}
|
||||
|
||||
if (parallel_pack_ || shard_by_col_) {
|
||||
signal_switch(k + 1);
|
||||
for (Index m = nm_ - 1; m >= 0; m--) signal_kernel(m, n, k, m == 0);
|
||||
} else {
|
||||
signal_packing(k);
|
||||
}
|
||||
}
|
||||
|
||||
void kernel(Index m, Index n, Index k) {
|
||||
// Note: order of iteration matters here. Iteration over m is innermost
|
||||
// because we want to reuse the same packed rhs in consequetive tasks
|
||||
// (rhs fits into L2$ while lhs only into L3$).
|
||||
const Index nend = n * gn_ + gn(n);
|
||||
const Index mend = m * gm_ + gm(m);
|
||||
if (shard_by_col_) {
|
||||
for (Index n1 = n * gn_; n1 < nend; n1++) {
|
||||
for (Index m1 = m * gm_; m1 < mend; m1++)
|
||||
GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
|
||||
packed_lhs_[k % (P - 1)][m1],
|
||||
packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
|
||||
Scalar(1), -1, -1, 0, 0);
|
||||
}
|
||||
} else {
|
||||
for (Index m1 = m * gm_; m1 < mend; m1++)
|
||||
for (Index n1 = n * gn_; n1 < nend; n1++) {
|
||||
GebpKernel()(output_.getSubMapper(m1 * bm_, n1 * bn_),
|
||||
packed_lhs_[k % (P - 1)][m1],
|
||||
packed_rhs_[k % (P - 1)][n1], bm(m1), bk(k), bn(n1),
|
||||
Scalar(1), -1, -1, 0, 0);
|
||||
}
|
||||
}
|
||||
signal_kernel(m, n, k + 1, false);
|
||||
signal_switch(k + 2);
|
||||
}
|
||||
|
||||
void signal_packing(Index k) {
|
||||
eigen_assert(!parallel_pack_);
|
||||
Index s = state_packing_ready_[k % P].fetch_sub(1);
|
||||
eigen_assert(s > 0);
|
||||
if (s != 1) return;
|
||||
state_packing_ready_[k % P] = shard_by_col_ ? nm_ : nn_;
|
||||
enqueue_packing(k, shard_by_col_);
|
||||
}
|
||||
|
||||
void signal_kernel(Index m, Index n, Index k, bool sync) {
|
||||
std::atomic<uint8_t>* state = &state_kernel_[k % P][m][n];
|
||||
Index s = state->load();
|
||||
eigen_assert(s > 0);
|
||||
if (s != 1 && state->fetch_sub(1) != 1) return;
|
||||
state->store(parallel_pack_ ? 3 : 2, std::memory_order_relaxed);
|
||||
if (sync)
|
||||
kernel(m, n, k);
|
||||
else
|
||||
device_.enqueueNoNotification([=]() { kernel(m, n, k); });
|
||||
}
|
||||
|
||||
void signal_switch(Index k, Index v = 1) {
|
||||
Index s = state_switch_[k % P].fetch_sub(v);
|
||||
eigen_assert(s >= v);
|
||||
if (s != v) return;
|
||||
|
||||
// Ready to switch to the next k slice.
|
||||
// Reset counter for the next iteration.
|
||||
state_switch_[k % P] =
|
||||
(parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_)) +
|
||||
nm_ * nn_;
|
||||
if (k < nk_) {
|
||||
// It is important to copy out nm_ and nn_, because once we kick off
|
||||
// the last packing operation this and device_ can be destroyed.
|
||||
Index nm = nm_;
|
||||
Index nn = nn_;
|
||||
// Issue lhs/rhs packing. Their completion will in turn kick off
|
||||
// kernels.
|
||||
if (parallel_pack_) {
|
||||
enqueue_packing(k, !shard_by_col_);
|
||||
enqueue_packing(k, shard_by_col_);
|
||||
} else if (shard_by_col_) {
|
||||
enqueue_packing(k, false);
|
||||
} else {
|
||||
enqueue_packing(k, true);
|
||||
}
|
||||
|
||||
// Termination handling.
|
||||
// Because kernel completion signals k + 2 switch, we need to finish nk
|
||||
// + 2 slices without issuing any tasks on nk + 1 slice. So here we
|
||||
// pretend that all nk + 1 packing tasks just finish instantly; so that
|
||||
// nk + 2 switch only waits for completion of nk kernels.
|
||||
} else if (k == nk_) {
|
||||
signal_switch(k + 1,
|
||||
parallel_pack_ ? nm_ + nn_ : (shard_by_col_ ? nn_ : nm_));
|
||||
} else {
|
||||
done_.Notify();
|
||||
}
|
||||
}
|
||||
|
||||
// Enqueue all rhs/lhs packing for k-th slice.
|
||||
void enqueue_packing(Index k, bool rhs) {
|
||||
enqueue_packing_helper(0, rhs ? nn_ : nm_, k, rhs);
|
||||
}
|
||||
|
||||
void enqueue_packing_helper(Index start, Index end, Index k, bool rhs) {
|
||||
if (end - start == 1) {
|
||||
if (rhs)
|
||||
pack_rhs(start, k);
|
||||
else
|
||||
pack_lhs(start, k);
|
||||
} else {
|
||||
Index mid = (start + end) / 2;
|
||||
device_.enqueueNoNotification(
|
||||
[=]() { enqueue_packing_helper(mid, end, k, rhs); });
|
||||
device_.enqueueNoNotification(
|
||||
[=]() { enqueue_packing_helper(start, mid, k, rhs); });
|
||||
}
|
||||
}
|
||||
|
||||
// Block sizes with accounting for potentially incomplete last block.
|
||||
Index bm(Index m) const { return m + 1 < nm0_ ? bm_ : m_ + bm_ - bm_ * nm0_; }
|
||||
Index bn(Index n) const { return n + 1 < nn0_ ? bn_ : n_ + bn_ - bn_ * nn0_; }
|
||||
Index bk(Index k) const { return k + 1 < nk_ ? bk_ : k_ + bk_ - bk_ * nk_; }
|
||||
// Task grain sizes accounting for potentially incomplete last task.
|
||||
Index gm(Index m) const { return m + 1 < nm_ ? gm_ : nm0_ + gm_ - gm_ * nm_; }
|
||||
Index gn(Index n) const { return n + 1 < nn_ ? gn_ : nn0_ + gn_ - gn_ * nn_; }
|
||||
|
||||
Context(const Context&) = delete;
|
||||
void operator=(const Context&) = delete;
|
||||
};
|
||||
|
||||
// Decide whether we want to shard m x n contraction by columns or by rows.
|
||||
static bool shardByCol(Index m, Index n, int num_threads) {
|
||||
// Note: we are comparing both n and m against Traits::nr, it is not
|
||||
// a mistake. We are trying to figure out how both n and m will fit into
|
||||
// the main sharding dimension.
|
||||
|
||||
// Sharding by column is the default
|
||||
// ... unless there is enough data for vectorization over rows
|
||||
if (m / num_threads >= Traits::nr &&
|
||||
// and not enough data for vectorization over columns
|
||||
(n / num_threads < Traits::nr ||
|
||||
// ... or barely enough data for vectorization over columns,
|
||||
// but it is not evenly dividable across threads
|
||||
(n / num_threads < 4 * Traits::nr &&
|
||||
(n % (num_threads * Traits::nr)) != 0 &&
|
||||
// ... and it is evenly dividable across threads for rows
|
||||
((m % (num_threads * Traits::nr)) == 0 ||
|
||||
// .. or it is not evenly dividable for both dimensions but
|
||||
// there is much more data over rows so that corner effects are
|
||||
// mitigated.
|
||||
(m / n >= 6)))))
|
||||
return false;
|
||||
// Wait, or if matrices are just substantially prolonged over the other
|
||||
// dimension.
|
||||
if (n / num_threads < 16 * Traits::nr && m > n * 32) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
Index coarsenM(Index m, Index n, Index bm, Index bn, Index bk, Index gn,
|
||||
int num_threads, bool shard_by_col) const {
|
||||
Index gm = 1;
|
||||
Index gm1 = 1;
|
||||
Index nm0 = divup(m, bm);
|
||||
Index nm1 = nm0;
|
||||
for (;;) {
|
||||
// Find the next candidate for m grain size. It needs to result in
|
||||
// different number of blocks. E.g. if we have 10 kernels, we want to try
|
||||
// 5 and 10, but not 6, 7, 8 and 9.
|
||||
while (gm1 <= nm0 && nm1 == divup(nm0, gm1)) gm1++;
|
||||
if (gm1 > nm0) break;
|
||||
// Check the candidate.
|
||||
int res = checkGrain(m, n, bm, bn, bk, gm1, gn, gm, gn, num_threads,
|
||||
shard_by_col);
|
||||
if (res < 0) break;
|
||||
nm1 = divup(nm0, gm1);
|
||||
if (res == 0) continue;
|
||||
// Commit new grain size.
|
||||
gm = gm1;
|
||||
}
|
||||
return gm;
|
||||
}
|
||||
|
||||
Index coarsenN(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
|
||||
int num_threads, bool shard_by_col) const {
|
||||
Index gn = 1;
|
||||
Index gn1 = 1;
|
||||
Index nn0 = divup(n, bn);
|
||||
Index nn1 = nn0;
|
||||
for (;;) {
|
||||
while (gn1 <= nn0 && nn1 == divup(nn0, gn1)) gn1++;
|
||||
if (gn1 > nn0) break;
|
||||
int res = checkGrain(m, n, bm, bn, bk, gm, gn1, gm, gn, num_threads,
|
||||
shard_by_col);
|
||||
if (res < 0) break;
|
||||
nn1 = divup(nn0, gn1);
|
||||
if (res == 0) continue;
|
||||
gn = gn1;
|
||||
}
|
||||
return gn;
|
||||
}
|
||||
|
||||
// checkGrain checks whether grain (gm, gn) is suitable and is better than
|
||||
// (oldgm, oldgn).
|
||||
int checkGrain(Index m, Index n, Index bm, Index bn, Index bk, Index gm,
|
||||
Index gn, Index oldgm, Index oldgn, int num_threads,
|
||||
bool shard_by_col) const {
|
||||
const TensorOpCost cost =
|
||||
contractionCost(bm * gm, bn * gn, bm, bn, bk, shard_by_col, true);
|
||||
double taskSize = TensorCostModel<ThreadPoolDevice>::taskSize(
|
||||
static_cast<double>(bm) * gm * bn * gn, cost);
|
||||
// If the task is too small, then we agree on it regardless of anything
|
||||
// else. Otherwise synchronization overheads will dominate.
|
||||
if (taskSize < 1) return 1;
|
||||
// If it is too large, then we reject it and all larger tasks.
|
||||
if (taskSize > 2) return -1;
|
||||
// Now we are in presumably good task size range.
|
||||
// The main deciding factor here is parallelism. Consider that we have 12
|
||||
// kernels and 4 threads. Grains of 2, 3 and 4 all yield good task sizes.
|
||||
// But 2/4 yield 6/3 tasks, which gives us parallelism of 0.75 (at most 3/4
|
||||
// of cores will be busy). While grain size 3 gives us 4 tasks, which gives
|
||||
// us parallelism of 1 (we can load all cores).
|
||||
Index nm0 = divup(m, bm);
|
||||
Index nn0 = divup(n, bn);
|
||||
Index new_tasks = divup(nm0, gm) * divup(nn0, gn);
|
||||
double new_parallelism = static_cast<double>(new_tasks) /
|
||||
(divup<int>(new_tasks, num_threads) * num_threads);
|
||||
Index old_tasks = divup(nm0, oldgm) * divup(nn0, oldgn);
|
||||
double old_parallelism = static_cast<double>(old_tasks) /
|
||||
(divup<int>(old_tasks, num_threads) * num_threads);
|
||||
if (new_parallelism > old_parallelism || new_parallelism == 1) return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else // EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
|
||||
template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
|
||||
void evalProduct(Scalar* buffer) const {
|
||||
if (this->m_j_size == 1) {
|
||||
@ -384,6 +1007,47 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
|
||||
TensorOpCost contractionCost(Index m, Index n, Index bm, Index bn, Index bk,
|
||||
bool shard_by_col, bool prepacked) const {
|
||||
const int packed_size = std::min<int>(PacketType<LhsScalar, Device>::size,
|
||||
PacketType<RhsScalar, Device>::size);
|
||||
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
|
||||
const double kd = static_cast<double>(bk);
|
||||
// Peak VFMA bandwidth is 0.5. However if we have not enough data for
|
||||
// vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
|
||||
// experimentally.
|
||||
double computeBandwidth = bk == 1 ? 4.0 :
|
||||
(shard_by_col ? bn : bm) < Traits::nr ||
|
||||
(shard_by_col ? bm : bn) < Traits::mr ? 2.0 : 0.5;
|
||||
#ifndef EIGEN_VECTORIZE_FMA
|
||||
// Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
|
||||
// However for MULPS/ADDPS we have dependent sequence of 2 such instructions,
|
||||
// so overall bandwidth is 1.0.
|
||||
if (computeBandwidth == 0.5) computeBandwidth = 1.0;
|
||||
#endif
|
||||
// Computations.
|
||||
TensorOpCost cost = TensorOpCost(0, 0, kd * computeBandwidth, true, packed_size);
|
||||
// Output stores.
|
||||
cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
|
||||
if (prepacked) {
|
||||
// Packing and kernels are executed in different tasks. When we calculate
|
||||
// task grain size we look only at kernel cost assuming that kernel
|
||||
// is more expensive than packing.
|
||||
return cost;
|
||||
}
|
||||
// Lhs/rhs loads + computations.
|
||||
TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * (kd / n);
|
||||
TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * (kd / m);
|
||||
// Lhs packing memory cost does not contribute considerably to overall
|
||||
// execution time because lhs is prefetched early and accessed sequentially.
|
||||
if (shard_by_col)
|
||||
lhsCost.dropMemoryCost();
|
||||
else
|
||||
rhsCost.dropMemoryCost();
|
||||
return cost + lhsCost + rhsCost;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -10,9 +10,8 @@
|
||||
#ifndef EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
|
||||
#define EIGEN_CXX11_TENSOR_TENSOR_COST_MODEL_H
|
||||
|
||||
//#if !defined(EIGEN_USE_GPU)
|
||||
//#define EIGEN_USE_COST_MODEL
|
||||
//#endif
|
||||
// Turn on the cost model by default
|
||||
#define EIGEN_USE_COST_MODEL
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
|
@ -14,7 +14,7 @@ namespace Eigen {
|
||||
|
||||
// Use the SimpleThreadPool by default. We'll switch to the new non blocking
|
||||
// thread pool later.
|
||||
#ifdef EIGEN_USE_NONBLOCKING_THREAD_POOL
|
||||
#ifndef EIGEN_USE_SIMPLE_THREAD_POOL
|
||||
template <typename Env> using ThreadPoolTempl = NonBlockingThreadPoolTempl<Env>;
|
||||
typedef NonBlockingThreadPool ThreadPool;
|
||||
#else
|
||||
|
@ -189,7 +189,7 @@ struct TensorEvaluator<const TensorInflationOp<Strides, ArgType>, Device>
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
|
||||
|
||||
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
|
||||
|
@ -409,7 +409,7 @@ struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Devi
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+packetSize-1 < internal::array_prod(dimensions()));
|
||||
|
||||
Index inputIndices[] = {0, 0};
|
||||
|
@ -93,7 +93,7 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
|
||||
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
IsAligned = true,
|
||||
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||
CoordAccess = true,
|
||||
@ -106,7 +106,7 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
|
||||
// The padding op doesn't change the rank of the tensor. Directly padding a scalar would lead
|
||||
// to a vector, which doesn't make sense. Instead one should reshape the scalar into a vector
|
||||
// of 1 element first and then pad.
|
||||
EIGEN_STATIC_ASSERT(NumDims > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
// Compute dimensions
|
||||
m_dimensions = m_impl.dimensions();
|
||||
@ -261,7 +261,7 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
|
||||
|
||||
const Index initialIndex = index;
|
||||
@ -318,7 +318,7 @@ struct TensorEvaluator<const TensorPaddingOp<PaddingDimensions, ArgType>, Device
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
|
||||
|
||||
const Index initialIndex = index;
|
||||
|
@ -184,7 +184,7 @@ struct TensorEvaluator<const TensorPatchOp<PatchDim, ArgType>, Device>
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
|
||||
|
||||
Index output_stride_index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? NumDims - 1 : 0;
|
||||
|
@ -177,7 +177,7 @@ static __global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self
|
||||
}
|
||||
|
||||
half2 accum = reducer.template initializePacket<half2>();
|
||||
Index max_iter = numext::mini<Index>((num_coeffs - first_index) / 2, NumPerThread*BlockSize / 2);
|
||||
const Index max_iter = numext::mini<Index>((num_coeffs - first_index) / 2, NumPerThread*BlockSize / 2);
|
||||
for (Index i = 0; i < max_iter; i += BlockSize) {
|
||||
const Index index = first_index + 2*i;
|
||||
eigen_assert(index + 1 < num_coeffs);
|
||||
@ -333,7 +333,7 @@ __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index nu
|
||||
for (Index j = 0; j < NumPerThread; j += unroll_times) {
|
||||
const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
|
||||
if (last_col >= num_coeffs_to_reduce) {
|
||||
for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col +=blockDim.x) {
|
||||
for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col += blockDim.x) {
|
||||
const float val = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
|
||||
reducer.reduce(val, &reduced_val);
|
||||
}
|
||||
@ -357,11 +357,97 @@ __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index nu
|
||||
atomicReduce(&(output[row]), reduced_val, reducer);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef EIGEN_HAS_CUDA_FP16
|
||||
/*
|
||||
template <int NumPerThread, typename Self,
|
||||
typename Reducer, typename Index>
|
||||
__global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
|
||||
half* output, half2* scratch) {
|
||||
eigen_assert(blockDim.y == 1);
|
||||
eigen_assert(blockDim.z == 1);
|
||||
eigen_assert(gridDim.y == 1);
|
||||
eigen_assert(gridDim.z == 1);
|
||||
|
||||
const int unroll_times = 16;
|
||||
eigen_assert(NumPerThread % unroll_times == 0);
|
||||
eigen_assert(unroll_times % 2 == 0);
|
||||
|
||||
const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
|
||||
const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;
|
||||
|
||||
const Index num_threads = blockDim.x * gridDim.x;
|
||||
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
// Initialize the output values if they weren't initialized by the ReductionInitKernel
|
||||
if (gridDim.x == 1) {
|
||||
Index i = thread_id;
|
||||
for (; i < num_preserved_coeffs; i += 2*num_threads) {
|
||||
((half2*)output)[i] = reducer.initializePacket();
|
||||
}
|
||||
if (i + 1 < num_preserved_coeffs) {
|
||||
output[i] = reducer.initialize();
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
|
||||
const Index row = i / input_col_blocks;
|
||||
|
||||
if (row + 1 < num_preserved_coeffs) {
|
||||
const Index col_block = i % input_col_blocks;
|
||||
const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;
|
||||
|
||||
half2 reduced_val1 = reducer.initializePacket();
|
||||
half2 reduced_val2 = reducer.initializePacket();
|
||||
|
||||
for (Index j = 0; j < NumPerThread; j += unroll_times) {
|
||||
const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
|
||||
if (last_col >= num_coeffs_to_reduce) {
|
||||
Index col = col_begin + blockDim.x * j;
|
||||
for (; col + 1 < num_coeffs_to_reduce; col += blockDim.x) {
|
||||
const half2 val = input.m_impl.packet(row * num_coeffs_to_reduce + col);
|
||||
reducer.reduce(val, &reduced_val);
|
||||
// do the same for reduce val2 here
|
||||
}
|
||||
if (col < num_coeffs_to_reduce) {
|
||||
// Peel;
|
||||
const half last = input.m_impl.coeff(row * num_coeffs_to_reduce + col+1);
|
||||
const half2 val = __halves2half2(last, reducer.initialize());
|
||||
reducer.reducePacket(val, &reduced_val);
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
// Faster version of the loop with no branches after unrolling.
|
||||
#pragma unroll
|
||||
for (int k = 0; k < unroll_times; ++k) {
|
||||
const Index col = col_begin + blockDim.x * (j + k);
|
||||
reducer.reduce(input.m_impl.packet(row * num_coeffs_to_reduce + col), &reduced_val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int offset = warpSize/2; offset > 0; offset /= 2) {
|
||||
reducer.reducePacket(__shfl_down(reduced_val, offset, warpSize), &reduced_val);
|
||||
}
|
||||
|
||||
if ((threadIdx.x & (warpSize - 1)) == 0) {
|
||||
if (row + 1 < num_preserved_coeffs) {
|
||||
atomicReduce(&(output[row]), reduced_val, reducer);
|
||||
}
|
||||
else {
|
||||
atomicReduce(scratch, reduced_val, reducer);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
#endif
|
||||
|
||||
template <typename Self, typename Op>
|
||||
struct InnerReducer<Self, Op, GpuDevice> {
|
||||
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
||||
|
@ -164,7 +164,7 @@ struct TensorEvaluator<const TensorStridingOp<Strides, ArgType>, Device>
|
||||
template<int LoadMode>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
|
||||
|
||||
Index inputIndices[] = {0, 0};
|
||||
@ -289,7 +289,7 @@ struct TensorEvaluator<TensorStridingOp<Strides, ArgType>, Device>
|
||||
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
void writePacket(Index index, const PacketReturnType& x)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(PacketSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(index+PacketSize-1 < this->dimensions().TotalSize());
|
||||
|
||||
Index inputIndices[] = {0, 0};
|
||||
|
@ -16,8 +16,8 @@ using Eigen::RowMajor;
|
||||
|
||||
static void test_1d()
|
||||
{
|
||||
Tensor<float, 1> vec1({6});
|
||||
Tensor<float, 1, RowMajor> vec2({6});
|
||||
Tensor<float, 1> vec1(6);
|
||||
Tensor<float, 1, RowMajor> vec2(6);
|
||||
|
||||
vec1(0) = 4.0; vec2(0) = 0.0;
|
||||
vec1(1) = 8.0; vec2(1) = 1.0;
|
||||
|
Loading…
x
Reference in New Issue
Block a user