mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-24 13:54:28 +08:00
quick reimplementation of SVD from the numeral recipes book:
this is still not Eigen style code but at least it works for n>m and it is more accurate than the JAMA based version. (I needed it now, this is why I did that)
This commit is contained in:
parent
0cd158820c
commit
0c2232e5d9
@ -371,13 +371,14 @@ inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBas
|
||||
if (ei_isApprox(c,Scalar(-1)))
|
||||
{
|
||||
c = std::max<Scalar>(c,-1);
|
||||
|
||||
SVD<Matrix<Scalar,3,3> > svd(v0 * v0.transpose() + v1 * v1.transpose());
|
||||
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
|
||||
SVD<Matrix<Scalar,2,3> > svd(m);
|
||||
Vector3 axis = svd.matrixV().col(2);
|
||||
|
||||
Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
|
||||
this->w() = ei_sqrt(w2);
|
||||
this->vec() = axis * ei_sqrt(Scalar(1) - w2);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -34,9 +34,7 @@
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
*
|
||||
* This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
|
||||
* with \c M \>= \c N.
|
||||
*
|
||||
* This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N.
|
||||
*
|
||||
* \sa MatrixBase::SVD()
|
||||
*/
|
||||
@ -55,13 +53,13 @@ template<typename MatrixType> class SVD
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
|
||||
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
|
||||
typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> SingularValuesType;
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
@ -70,9 +68,9 @@ template<typename MatrixType> class SVD
|
||||
SVD() : m_matU(), m_matV(), m_sigma(), m_isInitialized(false) {}
|
||||
|
||||
SVD(const MatrixType& matrix)
|
||||
: m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())),
|
||||
: m_matU(matrix.rows(), matrix.rows()),
|
||||
m_matV(matrix.cols(),matrix.cols()),
|
||||
m_sigma(std::min(matrix.rows(),matrix.cols())),
|
||||
m_sigma(matrix.cols()),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
@ -81,22 +79,22 @@ template<typename MatrixType> class SVD
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
|
||||
|
||||
const MatrixUType& matrixU() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_matU;
|
||||
}
|
||||
|
||||
const SingularValuesType& singularValues() const
|
||||
const MatrixUType& matrixU() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_sigma;
|
||||
return m_matU;
|
||||
}
|
||||
|
||||
const MatrixVType& matrixV() const
|
||||
const SingularValuesType& singularValues() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_matV;
|
||||
return m_sigma;
|
||||
}
|
||||
|
||||
const MatrixVType& matrixV() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "SVD is not initialized.");
|
||||
return m_matV;
|
||||
}
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
@ -111,6 +109,23 @@ template<typename MatrixType> class SVD
|
||||
template<typename ScalingType, typename RotationType>
|
||||
void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
|
||||
|
||||
protected:
|
||||
// Computes (a^2 + b^2)^(1/2) without destructive underflow or overflow.
|
||||
inline static Scalar pythagora(Scalar a, Scalar b)
|
||||
{
|
||||
Scalar abs_a = ei_abs(a);
|
||||
Scalar abs_b = ei_abs(b);
|
||||
if (abs_a > abs_b)
|
||||
return abs_a*ei_sqrt(Scalar(1.0)+ei_abs2(abs_b/abs_a));
|
||||
else
|
||||
return (abs_b == Scalar(0.0) ? Scalar(0.0) : abs_b*ei_sqrt(Scalar(1.0)+ei_abs2(abs_a/abs_b)));
|
||||
}
|
||||
|
||||
inline static Scalar sign(Scalar a, Scalar b)
|
||||
{
|
||||
return (b >= Scalar(0.0) ? ei_abs(a) : -ei_abs(a));
|
||||
}
|
||||
|
||||
protected:
|
||||
/** \internal */
|
||||
MatrixUType m_matU;
|
||||
@ -123,7 +138,7 @@ template<typename MatrixType> class SVD
|
||||
|
||||
/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
|
||||
*
|
||||
* \note this code has been adapted from JAMA (public domain)
|
||||
* \note this code has been adapted from Numerical Recipes, second edition.
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
void SVD<MatrixType>::compute(const MatrixType& matrix)
|
||||
@ -132,371 +147,259 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
|
||||
const int n = matrix.cols();
|
||||
const int nu = std::min(m,n);
|
||||
|
||||
m_matU.resize(m, nu);
|
||||
m_matU.resize(m, m);
|
||||
m_matU.setZero();
|
||||
m_sigma.resize(std::min(m,n));
|
||||
m_sigma.resize(n);
|
||||
m_matV.resize(n,n);
|
||||
|
||||
RowVector e(n);
|
||||
ColVector work(m);
|
||||
MatrixType matA(matrix);
|
||||
const bool wantu = true;
|
||||
const bool wantv = true;
|
||||
int i=0, j=0, k=0;
|
||||
int max_iters = 30;
|
||||
|
||||
// Reduce A to bidiagonal form, storing the diagonal elements
|
||||
// in s and the super-diagonal elements in e.
|
||||
int nct = std::min(m-1,n);
|
||||
int nrt = std::max(0,std::min(n-2,m));
|
||||
for (k = 0; k < std::max(nct,nrt); ++k)
|
||||
MatrixVType& V = m_matV;
|
||||
MatrixType A = matrix;
|
||||
SingularValuesType& W = m_sigma;
|
||||
|
||||
int flag,i,its,j,jj,k,l,nm;
|
||||
Scalar anorm, c, f, g, h, s, scale, x, y, z;
|
||||
bool convergence = true;
|
||||
|
||||
Matrix<Scalar,Dynamic,1> rv1(n);
|
||||
g = scale = anorm = 0;
|
||||
// Householder reduction to bidiagonal form.
|
||||
for (i=0; i<n; i++)
|
||||
{
|
||||
if (k < nct)
|
||||
l = i+1;
|
||||
rv1[i] = scale*g;
|
||||
g = s = scale = 0.0;
|
||||
if (i < m)
|
||||
{
|
||||
// Compute the transformation for the k-th column and
|
||||
// place the k-th diagonal in m_sigma[k].
|
||||
m_sigma[k] = matA.col(k).end(m-k).norm();
|
||||
if (m_sigma[k] != 0.0) // FIXME
|
||||
scale = A.col(i).end(m-i).cwise().abs().sum();
|
||||
if (scale)
|
||||
{
|
||||
if (matA(k,k) < 0.0)
|
||||
m_sigma[k] = -m_sigma[k];
|
||||
matA.col(k).end(m-k) /= m_sigma[k];
|
||||
matA(k,k) += 1.0;
|
||||
}
|
||||
m_sigma[k] = -m_sigma[k];
|
||||
}
|
||||
|
||||
for (j = k+1; j < n; ++j)
|
||||
{
|
||||
if ((k < nct) && (m_sigma[k] != 0.0))
|
||||
{
|
||||
// Apply the transformation.
|
||||
Scalar t = matA.col(k).end(m-k).dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
|
||||
t = -t/matA(k,k);
|
||||
matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
|
||||
}
|
||||
|
||||
// Place the k-th row of A into e for the
|
||||
// subsequent calculation of the row transformation.
|
||||
e[j] = matA(k,j);
|
||||
}
|
||||
|
||||
// Place the transformation in U for subsequent back multiplication.
|
||||
if (wantu & (k < nct))
|
||||
m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
|
||||
|
||||
if (k < nrt)
|
||||
{
|
||||
// Compute the k-th row transformation and place the
|
||||
// k-th super-diagonal in e[k].
|
||||
e[k] = e.end(n-k-1).norm();
|
||||
if (e[k] != 0.0)
|
||||
{
|
||||
if (e[k+1] < 0.0)
|
||||
e[k] = -e[k];
|
||||
e.end(n-k-1) /= e[k];
|
||||
e[k+1] += 1.0;
|
||||
}
|
||||
e[k] = -e[k];
|
||||
if ((k+1 < m) & (e[k] != 0.0))
|
||||
{
|
||||
// Apply the transformation.
|
||||
work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
|
||||
for (j = k+1; j < n; ++j)
|
||||
matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
|
||||
}
|
||||
|
||||
// Place the transformation in V for subsequent back multiplication.
|
||||
if (wantv)
|
||||
m_matV.col(k).end(n-k-1) = e.end(n-k-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Set up the final bidiagonal matrix or order p.
|
||||
int p = std::min(n,m+1);
|
||||
if (nct < n)
|
||||
m_sigma[nct] = matA(nct,nct);
|
||||
if (m < p)
|
||||
m_sigma[p-1] = 0.0;
|
||||
if (nrt+1 < p)
|
||||
e[nrt] = matA(nrt,p-1);
|
||||
e[p-1] = 0.0;
|
||||
|
||||
// If required, generate U.
|
||||
if (wantu)
|
||||
{
|
||||
for (j = nct; j < nu; ++j)
|
||||
{
|
||||
m_matU.col(j).setZero();
|
||||
m_matU(j,j) = 1.0;
|
||||
}
|
||||
for (k = nct-1; k >= 0; k--)
|
||||
{
|
||||
if (m_sigma[k] != 0.0)
|
||||
{
|
||||
for (j = k+1; j < nu; ++j)
|
||||
for (k=i; k<m; k++)
|
||||
{
|
||||
Scalar t = m_matU.col(k).end(m-k).dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
|
||||
t = -t/m_matU(k,k);
|
||||
m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
|
||||
A(k, i) /= scale;
|
||||
s += A(k, i)*A(k, i);
|
||||
}
|
||||
m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
|
||||
m_matU(k,k) = Scalar(1) + m_matU(k,k);
|
||||
if (k-1>0)
|
||||
m_matU.col(k).start(k-1).setZero();
|
||||
}
|
||||
else
|
||||
{
|
||||
m_matU.col(k).setZero();
|
||||
m_matU(k,k) = 1.0;
|
||||
f = A(i, i);
|
||||
g = -sign( ei_sqrt(s), f );
|
||||
h = f*g - s;
|
||||
A(i, i)=f-g;
|
||||
for (j=l; j<n; j++)
|
||||
{
|
||||
s = A.col(i).end(m-i).dot(A.col(j).end(m-i));
|
||||
f = s/h;
|
||||
A.col(j).end(m-i) += f*A.col(i).end(m-i);
|
||||
}
|
||||
A.col(i).end(m-i) *= scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If required, generate V.
|
||||
if (wantv)
|
||||
{
|
||||
for (k = n-1; k >= 0; k--)
|
||||
W[i] = scale *g;
|
||||
g = s = scale = 0.0;
|
||||
if (i < m && i != (n-1))
|
||||
{
|
||||
if ((k < nrt) & (e[k] != 0.0))
|
||||
scale = A.row(i).end(n-l).cwise().abs().sum();
|
||||
if (scale)
|
||||
{
|
||||
for (j = k+1; j < nu; ++j)
|
||||
for (k=l; k<n; k++)
|
||||
{
|
||||
Scalar t = m_matV.col(k).end(n-k-1).dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
|
||||
t = -t/m_matV(k+1,k);
|
||||
m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
|
||||
A(i, k) /= scale;
|
||||
s += A(i, k)*A(i, k);
|
||||
}
|
||||
f = A(i, l);
|
||||
g = -sign(ei_sqrt(s),f);
|
||||
h = f*g - s;
|
||||
A(i, l) = f-g;
|
||||
for (k=l; k<n; k++)
|
||||
rv1[k] = A(i, k)/h;
|
||||
for (j=l; j<m; j++)
|
||||
{
|
||||
s = A.row(j).end(n-l).dot(A.row(i).end(n-l));
|
||||
A.row(j).end(n-l) += s*rv1.end(n-l).transpose();
|
||||
}
|
||||
A.row(i).end(n-l) *= scale;
|
||||
}
|
||||
}
|
||||
anorm = std::max( anorm, (ei_abs(W[i])+ei_abs(rv1[i])) );
|
||||
}
|
||||
// Accumulation of right-hand transformations.
|
||||
for (i=(n-1); i>=0; i--)
|
||||
{
|
||||
//Accumulation of right-hand transformations.
|
||||
if (i < (n-1))
|
||||
{
|
||||
if (g)
|
||||
{
|
||||
for (j=l; j<n;j++) //Double division to avoid possible underflow.
|
||||
V(j, i) = (A(i, j)/A(i, l))/g;
|
||||
for (j=l; j<n; j++)
|
||||
{
|
||||
s = A.row(i).end(n-l).dot(V.col(j).end(n-l));
|
||||
V.col(j).end(n-l) += s * V.col(i).end(n-l);
|
||||
}
|
||||
}
|
||||
m_matV.col(k).setZero();
|
||||
m_matV(k,k) = 1.0;
|
||||
V.row(i).end(n-l).setZero();
|
||||
V.col(i).end(n-l).setZero();
|
||||
}
|
||||
V(i, i) = 1.0;
|
||||
g = rv1[i];
|
||||
l = i;
|
||||
}
|
||||
|
||||
// Main iteration loop for the singular values.
|
||||
int pp = p-1;
|
||||
int iter = 0;
|
||||
Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
|
||||
while (p > 0)
|
||||
// Accumulation of left-hand transformations.
|
||||
for (i=std::min(m,n)-1; i>=0; i--)
|
||||
{
|
||||
int k=0;
|
||||
int kase=0;
|
||||
|
||||
// Here is where a test for too many iterations would go.
|
||||
|
||||
// This section of the program inspects for
|
||||
// negligible elements in the s and e arrays. On
|
||||
// completion the variables kase and k are set as follows.
|
||||
|
||||
// kase = 1 if s(p) and e[k-1] are negligible and k<p
|
||||
// kase = 2 if s(k) is negligible and k<p
|
||||
// kase = 3 if e[k-1] is negligible, k<p, and
|
||||
// s(k), ..., s(p) are not negligible (qr step).
|
||||
// kase = 4 if e(p-1) is negligible (convergence).
|
||||
|
||||
for (k = p-2; k >= -1; --k)
|
||||
l = i+1;
|
||||
g = W[i];
|
||||
for (j=l; j<n; j++)
|
||||
A(i, j)=0.0;
|
||||
if (g)
|
||||
{
|
||||
if (k == -1)
|
||||
break;
|
||||
if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
|
||||
g = (Scalar)1.0/g;
|
||||
for (j=l; j<n; j++)
|
||||
{
|
||||
e[k] = 0.0;
|
||||
break;
|
||||
s = A.col(i).end(m-i).dot(A.col(j).end(m-i));
|
||||
f = (s/A(i, i))*g;
|
||||
A.col(j).end(m-i) += f * A.col(i).end(m-i);
|
||||
}
|
||||
}
|
||||
if (k == p-2)
|
||||
{
|
||||
kase = 4;
|
||||
A.col(i).end(m-i) *= g;
|
||||
}
|
||||
else
|
||||
A.col(i).end(m-i).setZero();
|
||||
++A(i, i);
|
||||
}
|
||||
// Diagonalization of the bidiagonal form: Loop over
|
||||
// singular values, and over allowed iterations.
|
||||
for (k=(n-1); k>=0; k--)
|
||||
{
|
||||
for (its=1; its<=max_iters; its++)
|
||||
{
|
||||
int ks;
|
||||
for (ks = p-1; ks >= k; --ks)
|
||||
flag=1;
|
||||
for (l=k; l>=0; l--)
|
||||
{
|
||||
if (ks == k)
|
||||
break;
|
||||
Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
|
||||
if (ei_abs(m_sigma[ks]) <= eps*t)
|
||||
// Test for splitting.
|
||||
nm=l-1;
|
||||
// Note that rv1[1] is always zero.
|
||||
if ((double)(ei_abs(rv1[l])+anorm) == anorm)
|
||||
{
|
||||
m_sigma[ks] = 0.0;
|
||||
flag=0;
|
||||
break;
|
||||
}
|
||||
if ((double)(ei_abs(W[nm])+anorm) == anorm)
|
||||
break;
|
||||
}
|
||||
if (ks == k)
|
||||
if (flag)
|
||||
{
|
||||
kase = 3;
|
||||
c=0.0; //Cancellation of rv1[l], if l > 1.
|
||||
s=1.0;
|
||||
for (i=l ;i<=k; i++)
|
||||
{
|
||||
f = s*rv1[i];
|
||||
rv1[i] = c*rv1[i];
|
||||
if ((double)(ei_abs(f)+anorm) == anorm)
|
||||
break;
|
||||
g = W[i];
|
||||
h = pythagora(f,g);
|
||||
W[i] = h;
|
||||
h = (Scalar)1.0/h;
|
||||
c = g*h;
|
||||
s = -f*h;
|
||||
for (j=0; j<m; j++)
|
||||
{
|
||||
y = A(j, nm);
|
||||
z = A(j, i);
|
||||
A(j, nm) = y*c + z*s;
|
||||
A(j, i) = z*c - y*s;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (ks == p-1)
|
||||
z = W[k];
|
||||
if (l == k) //Convergence.
|
||||
{
|
||||
kase = 1;
|
||||
if (z < 0.0) { // Singular value is made nonnegative.
|
||||
W[k] = -z;
|
||||
V.col(k) = -V.col(k);
|
||||
}
|
||||
break;
|
||||
}
|
||||
else
|
||||
if (its == max_iters)
|
||||
{
|
||||
kase = 2;
|
||||
k = ks;
|
||||
convergence = false;
|
||||
}
|
||||
x = W[l]; // Shift from bottom 2-by-2 minor.
|
||||
nm = k-1;
|
||||
y = W[nm];
|
||||
g = rv1[nm];
|
||||
h = rv1[k];
|
||||
f = ((y-z)*(y+z) + (g-h)*(g+h))/((Scalar)2.0*h*y);
|
||||
g = pythagora(f,1.0);
|
||||
f = ((x-z)*(x+z) + h*((y/(f+sign(g,f)))-h))/x;
|
||||
c = s = 1.0;
|
||||
//Next QR transformation:
|
||||
for (j=l; j<= nm;j++)
|
||||
{
|
||||
i = j+1;
|
||||
g = rv1[i];
|
||||
y = W[i];
|
||||
h = s*g;
|
||||
g = c*g;
|
||||
z = pythagora(f,h);
|
||||
rv1[j] = z;
|
||||
c = f/z;
|
||||
s = h/z;
|
||||
f = x*c + g*s;
|
||||
g = g*c - x*s;
|
||||
h = y*s;
|
||||
y *= c;
|
||||
for (jj=0; jj<n; jj++)
|
||||
{
|
||||
x = V(jj, j);
|
||||
z = V(jj, i);
|
||||
V(jj, j) = x*c + z*s;
|
||||
V(jj, i) = z*c - x*s;
|
||||
}
|
||||
z = pythagora(f,h);
|
||||
W[j] = z;
|
||||
// Rotation can be arbitrary if z = 0.
|
||||
if (z)
|
||||
{
|
||||
z = Scalar(1.0)/z;
|
||||
c = f*z;
|
||||
s = h*z;
|
||||
}
|
||||
f = c*g + s*y;
|
||||
x = c*y - s*g;
|
||||
for (jj=0; jj<m; jj++)
|
||||
{
|
||||
y = A(jj, j);
|
||||
z = A(jj, i);
|
||||
A(jj, j) = y*c + z*s;
|
||||
A(jj, i) = z*c - y*s;
|
||||
}
|
||||
}
|
||||
rv1[l] = 0.0;
|
||||
rv1[k] = f;
|
||||
W[k] = x;
|
||||
}
|
||||
}
|
||||
|
||||
// sort the singular values:
|
||||
{
|
||||
for (int i=0; i<n; i++)
|
||||
{
|
||||
int k;
|
||||
W.end(n-i).minCoeff(&k);
|
||||
if (k != i)
|
||||
{
|
||||
std::swap(W[k],W[i]);
|
||||
A.col(i).swap(A.col(k));
|
||||
V.col(i).swap(V.col(k));
|
||||
}
|
||||
}
|
||||
++k;
|
||||
|
||||
// Perform the task indicated by kase.
|
||||
switch (kase)
|
||||
{
|
||||
|
||||
// Deflate negligible s(p).
|
||||
case 1:
|
||||
{
|
||||
Scalar f(e[p-2]);
|
||||
e[p-2] = 0.0;
|
||||
for (j = p-2; j >= k; --j)
|
||||
{
|
||||
Scalar t(ei_hypot(m_sigma[j],f));
|
||||
Scalar cs(m_sigma[j]/t);
|
||||
Scalar sn(f/t);
|
||||
m_sigma[j] = t;
|
||||
if (j != k)
|
||||
{
|
||||
f = -sn*e[j-1];
|
||||
e[j-1] = cs*e[j-1];
|
||||
}
|
||||
if (wantv)
|
||||
{
|
||||
for (i = 0; i < n; ++i)
|
||||
{
|
||||
t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
|
||||
m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
|
||||
m_matV(i,j) = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
// Split at negligible s(k).
|
||||
case 2:
|
||||
{
|
||||
Scalar f(e[k-1]);
|
||||
e[k-1] = 0.0;
|
||||
for (j = k; j < p; ++j)
|
||||
{
|
||||
Scalar t(ei_hypot(m_sigma[j],f));
|
||||
Scalar cs( m_sigma[j]/t);
|
||||
Scalar sn(f/t);
|
||||
m_sigma[j] = t;
|
||||
f = -sn*e[j];
|
||||
e[j] = cs*e[j];
|
||||
if (wantu)
|
||||
{
|
||||
for (i = 0; i < m; ++i)
|
||||
{
|
||||
t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
|
||||
m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
|
||||
m_matU(i,j) = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
// Perform one qr step.
|
||||
case 3:
|
||||
{
|
||||
// Calculate the shift.
|
||||
Scalar scale = std::max(std::max(std::max(std::max(
|
||||
ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
|
||||
ei_abs(m_sigma[k])),ei_abs(e[k]));
|
||||
Scalar sp = m_sigma[p-1]/scale;
|
||||
Scalar spm1 = m_sigma[p-2]/scale;
|
||||
Scalar epm1 = e[p-2]/scale;
|
||||
Scalar sk = m_sigma[k]/scale;
|
||||
Scalar ek = e[k]/scale;
|
||||
Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
|
||||
Scalar c = (sp*epm1)*(sp*epm1);
|
||||
Scalar shift = 0.0;
|
||||
if ((b != 0.0) || (c != 0.0))
|
||||
{
|
||||
shift = ei_sqrt(b*b + c);
|
||||
if (b < 0.0)
|
||||
shift = -shift;
|
||||
shift = c/(b + shift);
|
||||
}
|
||||
Scalar f = (sk + sp)*(sk - sp) + shift;
|
||||
Scalar g = sk*ek;
|
||||
|
||||
// Chase zeros.
|
||||
|
||||
for (j = k; j < p-1; ++j)
|
||||
{
|
||||
Scalar t = ei_hypot(f,g);
|
||||
Scalar cs = f/t;
|
||||
Scalar sn = g/t;
|
||||
if (j != k)
|
||||
e[j-1] = t;
|
||||
f = cs*m_sigma[j] + sn*e[j];
|
||||
e[j] = cs*e[j] - sn*m_sigma[j];
|
||||
g = sn*m_sigma[j+1];
|
||||
m_sigma[j+1] = cs*m_sigma[j+1];
|
||||
if (wantv)
|
||||
{
|
||||
for (i = 0; i < n; ++i)
|
||||
{
|
||||
t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
|
||||
m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
|
||||
m_matV(i,j) = t;
|
||||
}
|
||||
}
|
||||
t = ei_hypot(f,g);
|
||||
cs = f/t;
|
||||
sn = g/t;
|
||||
m_sigma[j] = t;
|
||||
f = cs*e[j] + sn*m_sigma[j+1];
|
||||
m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
|
||||
g = sn*e[j+1];
|
||||
e[j+1] = cs*e[j+1];
|
||||
if (wantu && (j < m-1))
|
||||
{
|
||||
for (i = 0; i < m; ++i)
|
||||
{
|
||||
t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
|
||||
m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
|
||||
m_matU(i,j) = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
e[p-2] = f;
|
||||
iter = iter + 1;
|
||||
}
|
||||
break;
|
||||
|
||||
// Convergence.
|
||||
case 4:
|
||||
{
|
||||
// Make the singular values positive.
|
||||
if (m_sigma[k] <= 0.0)
|
||||
{
|
||||
m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
|
||||
if (wantv)
|
||||
m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
|
||||
}
|
||||
|
||||
// Order the singular values.
|
||||
while (k < pp)
|
||||
{
|
||||
if (m_sigma[k] >= m_sigma[k+1])
|
||||
break;
|
||||
Scalar t = m_sigma[k];
|
||||
m_sigma[k] = m_sigma[k+1];
|
||||
m_sigma[k+1] = t;
|
||||
if (wantv && (k < n-1))
|
||||
m_matV.col(k).swap(m_matV.col(k+1));
|
||||
if (wantu && (k < m-1))
|
||||
m_matU.col(k).swap(m_matU.col(k+1));
|
||||
++k;
|
||||
}
|
||||
iter = 0;
|
||||
p--;
|
||||
}
|
||||
break;
|
||||
} // end big switch
|
||||
} // end iterations
|
||||
}
|
||||
m_matU.setZero();
|
||||
if (m>=n)
|
||||
m_matU.block(0,0,m,n) = A;
|
||||
else
|
||||
m_matU = A.block(0,0,m,m);
|
||||
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
@ -50,7 +50,7 @@ template<typename MatrixType> void svd(const MatrixType& m)
|
||||
MatrixType sigma = MatrixType::Zero(rows,cols);
|
||||
MatrixType matU = MatrixType::Zero(rows,rows);
|
||||
sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal();
|
||||
matU.block(0,0,rows,cols) = svd.matrixU();
|
||||
matU = svd.matrixU();
|
||||
VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose());
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user