Remove unaligned assert tests.

Manually constructing an unaligned object declared as aligned
invokes UB, so we cannot technically check for alignment from
within the constructor.  Newer versions of clang optimize away
this check.

Removing the affected tests.
This commit is contained in:
Antonio Sanchez 2021-08-17 09:43:15 -07:00 committed by Rasmus Munk Larsen
parent 53a29c7e35
commit 0c4ae56e37
6 changed files with 0 additions and 204 deletions

View File

@ -164,7 +164,6 @@ ei_add_test(nullary)
ei_add_test(mixingtypes)
ei_add_test(io)
ei_add_test(packetmath "-DEIGEN_FAST_MATH=1")
ei_add_test(unalignedassert)
ei_add_test(vectorization_logic)
ei_add_test(basicstuff)
ei_add_test(constructor)

View File

@ -172,11 +172,6 @@ template<typename Scalar> void hyperplane_alignment()
VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES > 0
if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a));
#endif
}

View File

@ -110,11 +110,6 @@ template<typename Scalar> void parametrizedline_alignment()
VERIFY_IS_APPROX(p1->origin(), p3->origin());
VERIFY_IS_APPROX(p1->direction(), p2->direction());
VERIFY_IS_APPROX(p1->direction(), p3->direction());
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Line4a));
#endif
}
EIGEN_DECLARE_TEST(geo_parametrizedline)

View File

@ -218,10 +218,6 @@ template<typename Scalar> void mapQuaternion(void){
VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
#ifdef EIGEN_VECTORIZE
if(internal::packet_traits<Scalar>::Vectorizable)
VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
#endif
VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1);
VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1);
@ -281,10 +277,6 @@ template<typename Scalar> void quaternionAlignment(void){
VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
#endif
}
template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)

View File

@ -582,11 +582,6 @@ template<typename Scalar> void transform_alignment()
VERIFY_IS_APPROX(p1->matrix(), p3->matrix());
VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3));
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(internal::packet_traits<Scalar>::Vectorizable)
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a));
#endif
}
template<typename Scalar, int Dim, int Options> void transform_products()

View File

@ -1,180 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_TEST_PART_1)
// default
#elif defined(EIGEN_TEST_PART_2)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 16
#define EIGEN_MAX_ALIGN_BYTES 16
#elif defined(EIGEN_TEST_PART_3)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 32
#define EIGEN_MAX_ALIGN_BYTES 32
#elif defined(EIGEN_TEST_PART_4)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 64
#define EIGEN_MAX_ALIGN_BYTES 64
#endif
#include "main.h"
typedef Matrix<float, 6,1> Vector6f;
typedef Matrix<float, 8,1> Vector8f;
typedef Matrix<float, 12,1> Vector12f;
typedef Matrix<double, 5,1> Vector5d;
typedef Matrix<double, 6,1> Vector6d;
typedef Matrix<double, 7,1> Vector7d;
typedef Matrix<double, 8,1> Vector8d;
typedef Matrix<double, 9,1> Vector9d;
typedef Matrix<double,10,1> Vector10d;
typedef Matrix<double,12,1> Vector12d;
struct TestNew1
{
MatrixXd m; // good: m will allocate its own array, taking care of alignment.
TestNew1() : m(20,20) {}
};
struct TestNew2
{
Matrix3d m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned,
// 8-byte alignment is good enough here, which we'll get automatically
};
struct TestNew3
{
Vector2f m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned
};
struct TestNew4
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Vector2d m;
float f; // make the struct have sizeof%16!=0 to make it a little more tricky when we allow an array of 2 such objects
};
struct TestNew5
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
float f; // try the f at first -- the EIGEN_ALIGN_MAX attribute of m should make that still work
Matrix4f m;
};
struct TestNew6
{
Matrix<float,2,2,DontAlign> m; // good: no alignment requested
float f;
};
template<bool Align> struct Depends
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(Align)
Vector2d m;
float f;
};
template<typename T>
void check_unalignedassert_good()
{
T *x, *y;
x = new T;
delete x;
y = new T[2];
delete[] y;
}
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
template<typename T>
void construct_at_boundary(int boundary)
{
char buf[sizeof(T)+256];
size_t _buf = reinterpret_cast<internal::UIntPtr>(buf);
_buf += (EIGEN_MAX_ALIGN_BYTES - (_buf % EIGEN_MAX_ALIGN_BYTES)); // make 16/32/...-byte aligned
_buf += boundary; // make exact boundary-aligned
T *x = ::new(reinterpret_cast<void*>(_buf)) T;
x[0].setZero(); // just in order to silence warnings
x->~T();
}
#endif
void unalignedassert()
{
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
construct_at_boundary<Vector2f>(4);
construct_at_boundary<Vector3f>(4);
construct_at_boundary<Vector4f>(16);
construct_at_boundary<Vector6f>(4);
construct_at_boundary<Vector8f>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector12f>(16);
construct_at_boundary<Matrix2f>(16);
construct_at_boundary<Matrix3f>(4);
construct_at_boundary<Matrix4f>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector2d>(16);
construct_at_boundary<Vector3d>(4);
construct_at_boundary<Vector4d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector5d>(4);
construct_at_boundary<Vector6d>(16);
construct_at_boundary<Vector7d>(4);
construct_at_boundary<Vector8d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector9d>(4);
construct_at_boundary<Vector10d>(16);
construct_at_boundary<Vector12d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Matrix2d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Matrix3d>(4);
construct_at_boundary<Matrix4d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector2cf>(16);
construct_at_boundary<Vector3cf>(4);
construct_at_boundary<Vector2cd>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector3cd>(16);
#endif
check_unalignedassert_good<TestNew1>();
check_unalignedassert_good<TestNew2>();
check_unalignedassert_good<TestNew3>();
check_unalignedassert_good<TestNew4>();
check_unalignedassert_good<TestNew5>();
check_unalignedassert_good<TestNew6>();
check_unalignedassert_good<Depends<true> >();
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(EIGEN_MAX_ALIGN_BYTES>=16)
{
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector12f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector6d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector10d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector12d>(8));
// Complexes are disabled because the compiler might aggressively vectorize
// the initialization of complex coeffs to 0 before we can check for alignedness
//VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2cf>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4i>(8));
}
for(int b=8; b<EIGEN_MAX_ALIGN_BYTES; b+=8)
{
if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8f>(b));
if(b<64) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4f>(b));
if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4d>(b));
if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix2d>(b));
if(b<128) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4d>(b));
//if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2cd>(b));
}
#endif
}
EIGEN_DECLARE_TEST(unalignedassert)
{
CALL_SUBTEST(unalignedassert());
}