mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-20 08:39:37 +08:00
bugfix in Map by Keir Mierle
This commit is contained in:
parent
22792c696f
commit
0c7974dd4d
@ -85,7 +85,7 @@ template<typename MatrixType, int PacketAccess> class Map
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(rows);
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(cols);
|
||||
ei_assert(rows == this->rows());
|
||||
ei_assert(rows == this->cols());
|
||||
ei_assert(cols == this->cols());
|
||||
}
|
||||
|
||||
inline void resize(int size)
|
||||
|
@ -25,6 +25,10 @@
|
||||
#ifndef EIGEN_RANDOMSETTER_H
|
||||
#define EIGEN_RANDOMSETTER_H
|
||||
|
||||
/** Represents a std::map
|
||||
*
|
||||
* \see RandomSetter
|
||||
*/
|
||||
template<typename Scalar> struct StdMapTraits
|
||||
{
|
||||
typedef int KeyType;
|
||||
@ -37,6 +41,10 @@ template<typename Scalar> struct StdMapTraits
|
||||
};
|
||||
|
||||
#ifdef _HASH_MAP
|
||||
/** Represents a __gnu_cxx::hash_map
|
||||
*
|
||||
* \see RandomSetter
|
||||
*/
|
||||
template<typename Scalar> struct GnuHashMapTraits
|
||||
{
|
||||
typedef int KeyType;
|
||||
@ -50,6 +58,10 @@ template<typename Scalar> struct GnuHashMapTraits
|
||||
#endif
|
||||
|
||||
#ifdef _DENSE_HASH_MAP_H_
|
||||
/** Represents a google::dense_hash_map
|
||||
*
|
||||
* \see RandomSetter
|
||||
*/
|
||||
template<typename Scalar> struct GoogleDenseHashMapTraits
|
||||
{
|
||||
typedef int KeyType;
|
||||
@ -64,6 +76,10 @@ template<typename Scalar> struct GoogleDenseHashMapTraits
|
||||
#endif
|
||||
|
||||
#ifdef _SPARSE_HASH_MAP_H_
|
||||
/** Represents a google::sparse_hash_map
|
||||
*
|
||||
* \see RandomSetter
|
||||
*/
|
||||
template<typename Scalar> struct GoogleSparseHashMapTraits
|
||||
{
|
||||
typedef int KeyType;
|
||||
@ -78,7 +94,19 @@ template<typename Scalar> struct GoogleSparseHashMapTraits
|
||||
|
||||
/** \class RandomSetter
|
||||
*
|
||||
* Typical usage:
|
||||
* \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
|
||||
*
|
||||
* \param SparseMatrixType the type of the sparse matrix we are updating
|
||||
* \param MapTraits a traits class representing the map implementation used for the temporary sparse storage.
|
||||
* Its default value depends on the system.
|
||||
* \param OuterPacketBits defines the number of rows (or columns) manage by a single map object
|
||||
* as a power of two exponent.
|
||||
*
|
||||
* This class temporarily represents a sparse matrix object using a generic map implementation allowing for
|
||||
* efficient random access. The conversion from the compressed representation to a hash_map object is performed
|
||||
* in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
|
||||
* suggest the use of nested blocks as in this example:
|
||||
*
|
||||
* \code
|
||||
* SparseMatrix<double> m(rows,cols);
|
||||
* {
|
||||
@ -91,11 +119,28 @@ template<typename Scalar> struct GoogleSparseHashMapTraits
|
||||
* // and m is ready to use.
|
||||
* \endcode
|
||||
*
|
||||
* \note for performance and memory consumption reasons it is highly recommended to use
|
||||
* Google's hash library. To do so you have two options:
|
||||
* - include <google/dense_hash_map> yourself \b before Eigen/Sparse header
|
||||
* Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
|
||||
* involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
|
||||
* use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
|
||||
* To reach optimal performance, this value should be adjusted according to the average number of nonzeros
|
||||
* per rows/columns.
|
||||
*
|
||||
* The possible values for the template parameter MapTraits are:
|
||||
* - \b StdMapTraits: corresponds to std::map. (does not perform very well)
|
||||
* - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
|
||||
* - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
|
||||
* - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
|
||||
*
|
||||
* The default map implementation depends on the availability, and the preferred order is:
|
||||
* GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
|
||||
*
|
||||
* For performance and memory consumption reasons it is highly recommended to use one of
|
||||
* the Google's hash_map implementation. To enable the support for them, you have two options:
|
||||
* - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
|
||||
* - define EIGEN_GOOGLEHASH_SUPPORT
|
||||
* In the later case the inclusion of <google/dense_hash_map> is made for you.
|
||||
*
|
||||
* \see http://code.google.com/p/google-sparsehash/
|
||||
*/
|
||||
template<typename SparseMatrixType,
|
||||
template <typename T> class MapTraits =
|
||||
@ -121,11 +166,19 @@ class RandomSetter
|
||||
enum {
|
||||
SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
|
||||
TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
|
||||
SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
|
||||
SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor,
|
||||
IsUpperTriangular = SparseMatrixType::Flags & UpperTriangularBit,
|
||||
IsLowerTriangular = SparseMatrixType::Flags & LowerTriangularBit
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
/** Constructs a random setter object from the sparse matrix \a target
|
||||
*
|
||||
* Note that the initial value of \a target are imported. If you want to re-set
|
||||
* a sparse matrix from scratch, then you must set it to zero first using the
|
||||
* setZero() function.
|
||||
*/
|
||||
inline RandomSetter(SparseMatrixType& target)
|
||||
: mp_target(&target)
|
||||
{
|
||||
@ -153,6 +206,7 @@ class RandomSetter
|
||||
(*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
|
||||
}
|
||||
|
||||
/** Destructor updating back the sparse matrix target */
|
||||
~RandomSetter()
|
||||
{
|
||||
KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
|
||||
@ -226,8 +280,11 @@ class RandomSetter
|
||||
delete[] m_hashmaps;
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient at given coordinates \a row, \a col */
|
||||
Scalar& operator() (int row, int col)
|
||||
{
|
||||
ei_assert(((!IsUpperTriangular) || (row<=col)) && "Invalid access to an upper triangular matrix");
|
||||
ei_assert(((!IsLowerTriangular) || (col<=row)) && "Invalid access to an upper triangular matrix");
|
||||
const int outer = SetterRowMajor ? row : col;
|
||||
const int inner = SetterRowMajor ? col : row;
|
||||
const int outerMajor = outer >> OuterPacketBits; // index of the packet/map
|
||||
@ -236,7 +293,11 @@ class RandomSetter
|
||||
return m_hashmaps[outerMajor][key].value;
|
||||
}
|
||||
|
||||
// might be slow
|
||||
/** \returns the number of non zero coefficients
|
||||
*
|
||||
* \note According to the underlying map/hash_map implementation,
|
||||
* this function might be quite expensive.
|
||||
*/
|
||||
int nonZeros() const
|
||||
{
|
||||
int nz = 0;
|
||||
|
@ -4,7 +4,7 @@
|
||||
// -DNOGMM -DNOMTL -DCSPARSE
|
||||
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
|
||||
#ifndef SIZE
|
||||
#define SIZE 1000000
|
||||
#define SIZE 100000
|
||||
#endif
|
||||
|
||||
#ifndef NBPERROW
|
||||
@ -22,6 +22,8 @@
|
||||
|
||||
#include "BenchSparseUtil.h"
|
||||
|
||||
#define CHECK_MEM
|
||||
// #define CHECK_MEM std/**/::cout << "check mem\n"; getchar();
|
||||
|
||||
#define BENCH(X) \
|
||||
timer.reset(); \
|
||||
@ -34,6 +36,7 @@
|
||||
typedef std::vector<Vector2i> Coordinates;
|
||||
typedef std::vector<float> Values;
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals);
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals);
|
||||
@ -47,17 +50,31 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
int rows = SIZE;
|
||||
int cols = SIZE;
|
||||
bool fullyrand = false;
|
||||
//float density = float(NBPERROW)/float(SIZE);
|
||||
|
||||
BenchTimer timer;
|
||||
Coordinates coords;
|
||||
Values values;
|
||||
for (int i=0; i<cols*NBPERROW; ++i)
|
||||
if(fullyrand)
|
||||
{
|
||||
coords.push_back(Vector2i(ei_random<int>(0,rows-1),ei_random<int>(0,cols-1)));
|
||||
values.push_back(ei_random<Scalar>());
|
||||
for (int i=0; i<cols*NBPERROW; ++i)
|
||||
{
|
||||
coords.push_back(Vector2i(ei_random<int>(0,rows-1),ei_random<int>(0,cols-1)));
|
||||
values.push_back(ei_random<Scalar>());
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int j=0; j<cols; ++j)
|
||||
for (int i=0; i<NBPERROW; ++i)
|
||||
{
|
||||
coords.push_back(Vector2i(ei_random<int>(0,rows-1),j));
|
||||
values.push_back(ei_random<Scalar>());
|
||||
}
|
||||
}
|
||||
std::cout << "nnz = " << coords.size() << "\n";
|
||||
CHECK_MEM
|
||||
|
||||
// dense matrices
|
||||
#ifdef DENSEMATRIX
|
||||
@ -72,6 +89,15 @@ int main(int argc, char *argv[])
|
||||
#endif
|
||||
|
||||
// eigen sparse matrices
|
||||
if (!fullyrand)
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
for (int k=0; k<REPEAT; ++k)
|
||||
setinnerrand_eigen(coords,values);
|
||||
timer.stop();
|
||||
std::cout << "Eigen fillrand\t" << timer.value() << "\n";
|
||||
}
|
||||
{
|
||||
timer.reset();
|
||||
timer.start();
|
||||
@ -150,6 +176,20 @@ int main(int argc, char *argv[])
|
||||
return 0;
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals)
|
||||
{
|
||||
using namespace Eigen;
|
||||
SparseMatrix<Scalar> mat(SIZE,SIZE);
|
||||
mat.startFill(2000000/*coords.size()*/);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
{
|
||||
mat.fillrand(coords[i].x(), coords[i].y()) = vals[i];
|
||||
}
|
||||
mat.endFill();
|
||||
CHECK_MEM;
|
||||
return 0;
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals)
|
||||
{
|
||||
using namespace Eigen;
|
||||
@ -160,7 +200,7 @@ EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, cons
|
||||
{
|
||||
setter(coords[i].x(), coords[i].y()) = vals[i];
|
||||
}
|
||||
// std::cout << "check mem\n"; getchar();
|
||||
CHECK_MEM;
|
||||
}
|
||||
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
@ -174,7 +214,7 @@ EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords,
|
||||
RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
setter(coords[i].x(), coords[i].y()) = vals[i];
|
||||
// std::cout << "check mem\n"; getchar();
|
||||
CHECK_MEM;
|
||||
}
|
||||
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
@ -187,7 +227,7 @@ EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords,
|
||||
RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat);
|
||||
for (int i=0; i<coords.size(); ++i)
|
||||
setter(coords[i].x(), coords[i].y()) = vals[i];
|
||||
// std::cout << "check mem\n"; getchar();
|
||||
CHECK_MEM;
|
||||
}
|
||||
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
||||
}
|
||||
@ -204,7 +244,7 @@ EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const
|
||||
{
|
||||
aux(coords[i].x(), coords[i].y()) = vals[i];
|
||||
}
|
||||
// std::cout << "check mem\n"; getchar();
|
||||
CHECK_MEM;
|
||||
compressed_matrix<Scalar> mat(aux);
|
||||
return 0;// &mat(coords[0].x(), coords[0].y());
|
||||
}
|
||||
@ -245,6 +285,7 @@ EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const
|
||||
{
|
||||
aux(coords[i].x(), coords[i].y()) = vals[i];
|
||||
}
|
||||
CHECK_MEM;
|
||||
compressed_matrix<Scalar,row_major> mat(aux);
|
||||
return 0;//&mat(coords[0].x(), coords[0].y());
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user