mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-20 16:49:38 +08:00
bugfix in Map by Keir Mierle
This commit is contained in:
parent
22792c696f
commit
0c7974dd4d
@ -85,7 +85,7 @@ template<typename MatrixType, int PacketAccess> class Map
|
|||||||
EIGEN_ONLY_USED_FOR_DEBUG(rows);
|
EIGEN_ONLY_USED_FOR_DEBUG(rows);
|
||||||
EIGEN_ONLY_USED_FOR_DEBUG(cols);
|
EIGEN_ONLY_USED_FOR_DEBUG(cols);
|
||||||
ei_assert(rows == this->rows());
|
ei_assert(rows == this->rows());
|
||||||
ei_assert(rows == this->cols());
|
ei_assert(cols == this->cols());
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void resize(int size)
|
inline void resize(int size)
|
||||||
|
@ -25,6 +25,10 @@
|
|||||||
#ifndef EIGEN_RANDOMSETTER_H
|
#ifndef EIGEN_RANDOMSETTER_H
|
||||||
#define EIGEN_RANDOMSETTER_H
|
#define EIGEN_RANDOMSETTER_H
|
||||||
|
|
||||||
|
/** Represents a std::map
|
||||||
|
*
|
||||||
|
* \see RandomSetter
|
||||||
|
*/
|
||||||
template<typename Scalar> struct StdMapTraits
|
template<typename Scalar> struct StdMapTraits
|
||||||
{
|
{
|
||||||
typedef int KeyType;
|
typedef int KeyType;
|
||||||
@ -37,6 +41,10 @@ template<typename Scalar> struct StdMapTraits
|
|||||||
};
|
};
|
||||||
|
|
||||||
#ifdef _HASH_MAP
|
#ifdef _HASH_MAP
|
||||||
|
/** Represents a __gnu_cxx::hash_map
|
||||||
|
*
|
||||||
|
* \see RandomSetter
|
||||||
|
*/
|
||||||
template<typename Scalar> struct GnuHashMapTraits
|
template<typename Scalar> struct GnuHashMapTraits
|
||||||
{
|
{
|
||||||
typedef int KeyType;
|
typedef int KeyType;
|
||||||
@ -50,6 +58,10 @@ template<typename Scalar> struct GnuHashMapTraits
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef _DENSE_HASH_MAP_H_
|
#ifdef _DENSE_HASH_MAP_H_
|
||||||
|
/** Represents a google::dense_hash_map
|
||||||
|
*
|
||||||
|
* \see RandomSetter
|
||||||
|
*/
|
||||||
template<typename Scalar> struct GoogleDenseHashMapTraits
|
template<typename Scalar> struct GoogleDenseHashMapTraits
|
||||||
{
|
{
|
||||||
typedef int KeyType;
|
typedef int KeyType;
|
||||||
@ -64,6 +76,10 @@ template<typename Scalar> struct GoogleDenseHashMapTraits
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef _SPARSE_HASH_MAP_H_
|
#ifdef _SPARSE_HASH_MAP_H_
|
||||||
|
/** Represents a google::sparse_hash_map
|
||||||
|
*
|
||||||
|
* \see RandomSetter
|
||||||
|
*/
|
||||||
template<typename Scalar> struct GoogleSparseHashMapTraits
|
template<typename Scalar> struct GoogleSparseHashMapTraits
|
||||||
{
|
{
|
||||||
typedef int KeyType;
|
typedef int KeyType;
|
||||||
@ -78,7 +94,19 @@ template<typename Scalar> struct GoogleSparseHashMapTraits
|
|||||||
|
|
||||||
/** \class RandomSetter
|
/** \class RandomSetter
|
||||||
*
|
*
|
||||||
* Typical usage:
|
* \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
|
||||||
|
*
|
||||||
|
* \param SparseMatrixType the type of the sparse matrix we are updating
|
||||||
|
* \param MapTraits a traits class representing the map implementation used for the temporary sparse storage.
|
||||||
|
* Its default value depends on the system.
|
||||||
|
* \param OuterPacketBits defines the number of rows (or columns) manage by a single map object
|
||||||
|
* as a power of two exponent.
|
||||||
|
*
|
||||||
|
* This class temporarily represents a sparse matrix object using a generic map implementation allowing for
|
||||||
|
* efficient random access. The conversion from the compressed representation to a hash_map object is performed
|
||||||
|
* in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
|
||||||
|
* suggest the use of nested blocks as in this example:
|
||||||
|
*
|
||||||
* \code
|
* \code
|
||||||
* SparseMatrix<double> m(rows,cols);
|
* SparseMatrix<double> m(rows,cols);
|
||||||
* {
|
* {
|
||||||
@ -91,11 +119,28 @@ template<typename Scalar> struct GoogleSparseHashMapTraits
|
|||||||
* // and m is ready to use.
|
* // and m is ready to use.
|
||||||
* \endcode
|
* \endcode
|
||||||
*
|
*
|
||||||
* \note for performance and memory consumption reasons it is highly recommended to use
|
* Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
|
||||||
* Google's hash library. To do so you have two options:
|
* involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
|
||||||
* - include <google/dense_hash_map> yourself \b before Eigen/Sparse header
|
* use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
|
||||||
|
* To reach optimal performance, this value should be adjusted according to the average number of nonzeros
|
||||||
|
* per rows/columns.
|
||||||
|
*
|
||||||
|
* The possible values for the template parameter MapTraits are:
|
||||||
|
* - \b StdMapTraits: corresponds to std::map. (does not perform very well)
|
||||||
|
* - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
|
||||||
|
* - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
|
||||||
|
* - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
|
||||||
|
*
|
||||||
|
* The default map implementation depends on the availability, and the preferred order is:
|
||||||
|
* GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
|
||||||
|
*
|
||||||
|
* For performance and memory consumption reasons it is highly recommended to use one of
|
||||||
|
* the Google's hash_map implementation. To enable the support for them, you have two options:
|
||||||
|
* - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
|
||||||
* - define EIGEN_GOOGLEHASH_SUPPORT
|
* - define EIGEN_GOOGLEHASH_SUPPORT
|
||||||
* In the later case the inclusion of <google/dense_hash_map> is made for you.
|
* In the later case the inclusion of <google/dense_hash_map> is made for you.
|
||||||
|
*
|
||||||
|
* \see http://code.google.com/p/google-sparsehash/
|
||||||
*/
|
*/
|
||||||
template<typename SparseMatrixType,
|
template<typename SparseMatrixType,
|
||||||
template <typename T> class MapTraits =
|
template <typename T> class MapTraits =
|
||||||
@ -121,11 +166,19 @@ class RandomSetter
|
|||||||
enum {
|
enum {
|
||||||
SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
|
SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
|
||||||
TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
|
TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
|
||||||
SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
|
SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor,
|
||||||
|
IsUpperTriangular = SparseMatrixType::Flags & UpperTriangularBit,
|
||||||
|
IsLowerTriangular = SparseMatrixType::Flags & LowerTriangularBit
|
||||||
};
|
};
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
|
/** Constructs a random setter object from the sparse matrix \a target
|
||||||
|
*
|
||||||
|
* Note that the initial value of \a target are imported. If you want to re-set
|
||||||
|
* a sparse matrix from scratch, then you must set it to zero first using the
|
||||||
|
* setZero() function.
|
||||||
|
*/
|
||||||
inline RandomSetter(SparseMatrixType& target)
|
inline RandomSetter(SparseMatrixType& target)
|
||||||
: mp_target(&target)
|
: mp_target(&target)
|
||||||
{
|
{
|
||||||
@ -153,6 +206,7 @@ class RandomSetter
|
|||||||
(*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
|
(*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** Destructor updating back the sparse matrix target */
|
||||||
~RandomSetter()
|
~RandomSetter()
|
||||||
{
|
{
|
||||||
KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
|
KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
|
||||||
@ -226,8 +280,11 @@ class RandomSetter
|
|||||||
delete[] m_hashmaps;
|
delete[] m_hashmaps;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** \returns a reference to the coefficient at given coordinates \a row, \a col */
|
||||||
Scalar& operator() (int row, int col)
|
Scalar& operator() (int row, int col)
|
||||||
{
|
{
|
||||||
|
ei_assert(((!IsUpperTriangular) || (row<=col)) && "Invalid access to an upper triangular matrix");
|
||||||
|
ei_assert(((!IsLowerTriangular) || (col<=row)) && "Invalid access to an upper triangular matrix");
|
||||||
const int outer = SetterRowMajor ? row : col;
|
const int outer = SetterRowMajor ? row : col;
|
||||||
const int inner = SetterRowMajor ? col : row;
|
const int inner = SetterRowMajor ? col : row;
|
||||||
const int outerMajor = outer >> OuterPacketBits; // index of the packet/map
|
const int outerMajor = outer >> OuterPacketBits; // index of the packet/map
|
||||||
@ -236,7 +293,11 @@ class RandomSetter
|
|||||||
return m_hashmaps[outerMajor][key].value;
|
return m_hashmaps[outerMajor][key].value;
|
||||||
}
|
}
|
||||||
|
|
||||||
// might be slow
|
/** \returns the number of non zero coefficients
|
||||||
|
*
|
||||||
|
* \note According to the underlying map/hash_map implementation,
|
||||||
|
* this function might be quite expensive.
|
||||||
|
*/
|
||||||
int nonZeros() const
|
int nonZeros() const
|
||||||
{
|
{
|
||||||
int nz = 0;
|
int nz = 0;
|
||||||
|
@ -4,7 +4,7 @@
|
|||||||
// -DNOGMM -DNOMTL -DCSPARSE
|
// -DNOGMM -DNOMTL -DCSPARSE
|
||||||
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
|
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
|
||||||
#ifndef SIZE
|
#ifndef SIZE
|
||||||
#define SIZE 1000000
|
#define SIZE 100000
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef NBPERROW
|
#ifndef NBPERROW
|
||||||
@ -22,6 +22,8 @@
|
|||||||
|
|
||||||
#include "BenchSparseUtil.h"
|
#include "BenchSparseUtil.h"
|
||||||
|
|
||||||
|
#define CHECK_MEM
|
||||||
|
// #define CHECK_MEM std/**/::cout << "check mem\n"; getchar();
|
||||||
|
|
||||||
#define BENCH(X) \
|
#define BENCH(X) \
|
||||||
timer.reset(); \
|
timer.reset(); \
|
||||||
@ -34,6 +36,7 @@
|
|||||||
typedef std::vector<Vector2i> Coordinates;
|
typedef std::vector<Vector2i> Coordinates;
|
||||||
typedef std::vector<float> Values;
|
typedef std::vector<float> Values;
|
||||||
|
|
||||||
|
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals);
|
||||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals);
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals);
|
||||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals);
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals);
|
||||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals);
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals);
|
||||||
@ -47,17 +50,31 @@ int main(int argc, char *argv[])
|
|||||||
{
|
{
|
||||||
int rows = SIZE;
|
int rows = SIZE;
|
||||||
int cols = SIZE;
|
int cols = SIZE;
|
||||||
|
bool fullyrand = false;
|
||||||
//float density = float(NBPERROW)/float(SIZE);
|
//float density = float(NBPERROW)/float(SIZE);
|
||||||
|
|
||||||
BenchTimer timer;
|
BenchTimer timer;
|
||||||
Coordinates coords;
|
Coordinates coords;
|
||||||
Values values;
|
Values values;
|
||||||
|
if(fullyrand)
|
||||||
|
{
|
||||||
for (int i=0; i<cols*NBPERROW; ++i)
|
for (int i=0; i<cols*NBPERROW; ++i)
|
||||||
{
|
{
|
||||||
coords.push_back(Vector2i(ei_random<int>(0,rows-1),ei_random<int>(0,cols-1)));
|
coords.push_back(Vector2i(ei_random<int>(0,rows-1),ei_random<int>(0,cols-1)));
|
||||||
values.push_back(ei_random<Scalar>());
|
values.push_back(ei_random<Scalar>());
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
for (int j=0; j<cols; ++j)
|
||||||
|
for (int i=0; i<NBPERROW; ++i)
|
||||||
|
{
|
||||||
|
coords.push_back(Vector2i(ei_random<int>(0,rows-1),j));
|
||||||
|
values.push_back(ei_random<Scalar>());
|
||||||
|
}
|
||||||
|
}
|
||||||
std::cout << "nnz = " << coords.size() << "\n";
|
std::cout << "nnz = " << coords.size() << "\n";
|
||||||
|
CHECK_MEM
|
||||||
|
|
||||||
// dense matrices
|
// dense matrices
|
||||||
#ifdef DENSEMATRIX
|
#ifdef DENSEMATRIX
|
||||||
@ -72,6 +89,15 @@ int main(int argc, char *argv[])
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
// eigen sparse matrices
|
// eigen sparse matrices
|
||||||
|
if (!fullyrand)
|
||||||
|
{
|
||||||
|
timer.reset();
|
||||||
|
timer.start();
|
||||||
|
for (int k=0; k<REPEAT; ++k)
|
||||||
|
setinnerrand_eigen(coords,values);
|
||||||
|
timer.stop();
|
||||||
|
std::cout << "Eigen fillrand\t" << timer.value() << "\n";
|
||||||
|
}
|
||||||
{
|
{
|
||||||
timer.reset();
|
timer.reset();
|
||||||
timer.start();
|
timer.start();
|
||||||
@ -150,6 +176,20 @@ int main(int argc, char *argv[])
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals)
|
||||||
|
{
|
||||||
|
using namespace Eigen;
|
||||||
|
SparseMatrix<Scalar> mat(SIZE,SIZE);
|
||||||
|
mat.startFill(2000000/*coords.size()*/);
|
||||||
|
for (int i=0; i<coords.size(); ++i)
|
||||||
|
{
|
||||||
|
mat.fillrand(coords[i].x(), coords[i].y()) = vals[i];
|
||||||
|
}
|
||||||
|
mat.endFill();
|
||||||
|
CHECK_MEM;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals)
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals)
|
||||||
{
|
{
|
||||||
using namespace Eigen;
|
using namespace Eigen;
|
||||||
@ -160,7 +200,7 @@ EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, cons
|
|||||||
{
|
{
|
||||||
setter(coords[i].x(), coords[i].y()) = vals[i];
|
setter(coords[i].x(), coords[i].y()) = vals[i];
|
||||||
}
|
}
|
||||||
// std::cout << "check mem\n"; getchar();
|
CHECK_MEM;
|
||||||
}
|
}
|
||||||
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
||||||
}
|
}
|
||||||
@ -174,7 +214,7 @@ EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords,
|
|||||||
RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat);
|
RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat);
|
||||||
for (int i=0; i<coords.size(); ++i)
|
for (int i=0; i<coords.size(); ++i)
|
||||||
setter(coords[i].x(), coords[i].y()) = vals[i];
|
setter(coords[i].x(), coords[i].y()) = vals[i];
|
||||||
// std::cout << "check mem\n"; getchar();
|
CHECK_MEM;
|
||||||
}
|
}
|
||||||
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
||||||
}
|
}
|
||||||
@ -187,7 +227,7 @@ EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords,
|
|||||||
RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat);
|
RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat);
|
||||||
for (int i=0; i<coords.size(); ++i)
|
for (int i=0; i<coords.size(); ++i)
|
||||||
setter(coords[i].x(), coords[i].y()) = vals[i];
|
setter(coords[i].x(), coords[i].y()) = vals[i];
|
||||||
// std::cout << "check mem\n"; getchar();
|
CHECK_MEM;
|
||||||
}
|
}
|
||||||
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
||||||
}
|
}
|
||||||
@ -204,7 +244,7 @@ EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const
|
|||||||
{
|
{
|
||||||
aux(coords[i].x(), coords[i].y()) = vals[i];
|
aux(coords[i].x(), coords[i].y()) = vals[i];
|
||||||
}
|
}
|
||||||
// std::cout << "check mem\n"; getchar();
|
CHECK_MEM;
|
||||||
compressed_matrix<Scalar> mat(aux);
|
compressed_matrix<Scalar> mat(aux);
|
||||||
return 0;// &mat(coords[0].x(), coords[0].y());
|
return 0;// &mat(coords[0].x(), coords[0].y());
|
||||||
}
|
}
|
||||||
@ -245,6 +285,7 @@ EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const
|
|||||||
{
|
{
|
||||||
aux(coords[i].x(), coords[i].y()) = vals[i];
|
aux(coords[i].x(), coords[i].y()) = vals[i];
|
||||||
}
|
}
|
||||||
|
CHECK_MEM;
|
||||||
compressed_matrix<Scalar,row_major> mat(aux);
|
compressed_matrix<Scalar,row_major> mat(aux);
|
||||||
return 0;//&mat(coords[0].x(), coords[0].y());
|
return 0;//&mat(coords[0].x(), coords[0].y());
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user