mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-14 04:35:57 +08:00
Document member functions and types of ComplexEigenSolver.
This commit is contained in:
parent
04a4e22c58
commit
0ee10f7da4
@ -31,9 +31,11 @@
|
||||
*
|
||||
* \class ComplexEigenSolver
|
||||
*
|
||||
* \brief Eigen values/vectors solver for general complex matrices
|
||||
* \brief Computes eigenvalues and eigenvectors of general complex matrices
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
|
||||
* \tparam _MatrixType the type of the matrix of which we are
|
||||
* computing the eigendecomposition; this is expected to be an
|
||||
* instantiation of the Matrix class template.
|
||||
*
|
||||
* \sa class EigenSolver, class SelfAdjointEigenSolver
|
||||
*/
|
||||
@ -48,21 +50,47 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
|
||||
/** \brief Scalar type for matrices of type \p _MatrixType. */
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
/** \brief Complex scalar type for \p _MatrixType.
|
||||
*
|
||||
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
||||
* \c float or \c double) and just \c Scalar if #Scalar is
|
||||
* complex.
|
||||
*/
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
|
||||
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
||||
*
|
||||
* This is a column vector with entries of type #Complex.
|
||||
* The length of the vector is the size of \p _MatrixType.
|
||||
*/
|
||||
typedef Matrix<Complex, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
|
||||
|
||||
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
||||
*
|
||||
* This is a square matrix with entries of type #Complex.
|
||||
* The size is the same as the size of \p _MatrixType.
|
||||
*/
|
||||
typedef Matrix<Complex, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, ColsAtCompileTime> EigenvectorType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via ComplexEigenSolver::compute(const MatrixType&).
|
||||
*/
|
||||
/** \brief Default constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via compute().
|
||||
*/
|
||||
ComplexEigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false)
|
||||
{}
|
||||
|
||||
/** \brief Constructor; computes eigendecomposition of given matrix.
|
||||
*
|
||||
* This constructor calls compute() to compute the eigendecomposition.
|
||||
*
|
||||
* \param[in] matrix %Matrix whose eigendecomposition is to be computed.
|
||||
*/
|
||||
ComplexEigenSolver(const MatrixType& matrix)
|
||||
: m_eivec(matrix.rows(),matrix.cols()),
|
||||
m_eivalues(matrix.cols()),
|
||||
@ -71,18 +99,36 @@ template<typename _MatrixType> class ComplexEigenSolver
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
EigenvectorType eigenvectors(void) const
|
||||
/** \brief Returns the eigenvectors of given matrix. */
|
||||
EigenvectorType eigenvectors() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
||||
return m_eivec;
|
||||
}
|
||||
|
||||
/** \brief Returns the eigenvalues of given matrix. */
|
||||
EigenvalueType eigenvalues() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
|
||||
return m_eivalues;
|
||||
}
|
||||
|
||||
/** \brief Computes eigendecomposition of given matrix.
|
||||
*
|
||||
* This function computes the eigenvalues and eigenvectors of \p
|
||||
* matrix. The eigenvalues() and eigenvectors() functions can be
|
||||
* used to retrieve the computed eigendecomposition.
|
||||
*
|
||||
* The matrix is first reduced to Schur form using the
|
||||
* ComplexSchur class. The Schur decomposition is then used to
|
||||
* compute the eigenvalues and eigenvectors.
|
||||
*
|
||||
* The cost of the computation is dominated by the cost of the
|
||||
* Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
|
||||
* is the size of the matrix.
|
||||
*
|
||||
* \param[in] matrix %Matrix whose eigendecomposition is to be computed.
|
||||
*/
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
protected:
|
||||
|
@ -29,7 +29,7 @@
|
||||
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
||||
* \nonstableyet
|
||||
*
|
||||
* \class ComplexShur
|
||||
* \class ComplexSchur
|
||||
*
|
||||
* \brief Performs a complex Schur decomposition of a real or complex square matrix
|
||||
*
|
||||
|
Loading…
x
Reference in New Issue
Block a user