QR: add isInjective(), isSurjective(),

mark isFullRank() deprecated,
    add solve() (mix of Keir's patch and LU::solve())
=> there is big problem with complex which are not working
This commit is contained in:
Gael Guennebaud 2009-01-28 09:45:53 +00:00
parent cf89d9371a
commit 0f15a8d829
4 changed files with 225 additions and 23 deletions

View File

@ -55,12 +55,64 @@ template<typename MatrixType> class QR
{
_compute(matrix);
}
/** \returns whether or not the matrix is of full rank */
bool isFullRank() const { return rank() == std::min(m_qr.rows(),m_qr.cols()); }
/** \deprecated use isInjective()
* \returns whether or not the matrix is of full rank
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
bool isFullRank() const EIGEN_DEPRECATED { return rank() == m_qr.cols(); }
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
int rank() const;
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
inline int dimensionOfKernel() const
{
return m_qr.cols() - rank();
}
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
inline bool isInjective() const
{
return rank() == m_qr.cols();
}
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
* linear map; false otherwise.
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
inline bool isSurjective() const
{
return rank() == m_qr.rows();
}
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
*
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
inline bool isInvertible() const
{
return isInjective() && isSurjective();
}
/** \returns a read-only expression of the matrix R of the actual the QR decomposition */
const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
matrixR(void) const
@ -69,6 +121,32 @@ template<typename MatrixType> class QR
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
* \param b the right-hand-side of the equation to solve.
*
* \param result a pointer to the vector/matrix in which to store the solution, if any exists.
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
* If no solution exists, *result is left with undefined coefficients.
*
* \returns true if any solution exists, false if no solution exists.
*
* \note If there exist more than one solution, this method will arbitrarily choose one.
* If you need a complete analysis of the space of solutions, take the one solution obtained
* by this method and add to it elements of the kernel, as determined by kernel().
*
* \note The case where b is a matrix is not yet implemented. Also, this
* code is space inefficient.
*
* Example: \include QR_solve.cpp
* Output: \verbinclude QR_solve.out
*
* \sa MatrixBase::solveTriangular(), kernel(), computeKernel(), inverse(), computeInverse()
*/
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
MatrixType matrixQ(void) const;
private:
@ -88,12 +166,11 @@ int QR<MatrixType>::rank() const
{
if (!m_rankIsUptodate)
{
RealScalar maxCoeff = m_qr.diagonal().maxCoeff();
int n = std::min(m_qr.rows(),m_qr.cols());
m_rank = n;
for (int i=0; i<n; ++i)
if (ei_isMuchSmallerThan(m_qr.diagonal().coeff(i), maxCoeff))
--m_rank;
RealScalar maxCoeff = m_qr.diagonal().cwise().abs().maxCoeff();
int n = m_qr.cols();
m_rank = 0;
while(m_rank<n && !ei_isMuchSmallerThan(m_qr.diagonal().coeff(m_rank), maxCoeff))
++m_rank;
m_rankIsUptodate = true;
}
return m_rank;
@ -132,7 +209,7 @@ void QR<MatrixType>::_compute(const MatrixType& matrix)
m_hCoeffs.coeffRef(k) = 0;
}
}
else if ( (!ei_isMuchSmallerThan(beta=m_qr.col(k).end(remainingSize-1).squaredNorm(),static_cast<Scalar>(1))) || ei_imag(v0)==0 )
else if ( (!ei_isMuchSmallerThan(beta=m_qr.col(k).end(remainingSize-1).squaredNorm(),static_cast<Scalar>(1))) ) // FIXME what about ei_imag(v0) ??
{
// form k-th Householder vector
beta = ei_sqrt(ei_abs2(v0)+beta);
@ -160,9 +237,40 @@ void QR<MatrixType>::_compute(const MatrixType& matrix)
}
}
template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
bool QR<MatrixType>::solve(
const MatrixBase<OtherDerived>& b,
ResultType *result
) const
{
const int rows = m_qr.rows();
ei_assert(b.rows() == rows);
result->resize(rows, b.cols());
// TODO(keir): There is almost certainly a faster way to multiply by
// Q^T without explicitly forming matrixQ(). Investigate.
*result = matrixQ().transpose()*b;
if(!isSurjective())
{
// is result is in the image of R ?
RealScalar biggest_in_res = result->corner(TopLeft, m_rank, result->cols()).cwise().abs().maxCoeff();
for(int col = 0; col < result->cols(); ++col)
for(int row = m_rank; row < result->rows(); ++row)
if(!ei_isMuchSmallerThan(result->coeff(row,col), biggest_in_res))
return false;
}
m_qr.corner(TopLeft, m_rank, m_rank)
.template marked<UpperTriangular>()
.solveTriangularInPlace(result->corner(TopLeft, m_rank, result->cols()));
return true;
}
/** \returns the matrix Q */
template<typename MatrixType>
MatrixType QR<MatrixType>::matrixQ(void) const
MatrixType QR<MatrixType>::matrixQ() const
{
// compute the product Q_0 Q_1 ... Q_n-1,
// where Q_k is the k-th Householder transformation I - h_k v_k v_k'

View File

@ -1,6 +1,7 @@
#include <Eigen/Core>
#include <Eigen/Array>
#include <Eigen/LU>
#include <Eigen/QR>
#include <Eigen/Cholesky>
#include <Eigen/Geometry>

View File

@ -27,9 +27,7 @@
template<typename MatrixType> void qr(const MatrixType& m)
{
/* this test covers the following files:
QR.h
*/
/* this test covers the following files: QR.h */
int rows = m.rows();
int cols = m.cols();
@ -57,6 +55,98 @@ template<typename MatrixType> void qr(const MatrixType& m)
VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
}
template<typename Derived>
void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
{
typedef typename Derived::RealScalar RealScalar;
for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
{
RealScalar d = Eigen::ei_random<RealScalar>(-1,1);
int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
int j;
do {
j = Eigen::ei_random<int>(0,m.rows()-1);
} while (i==j); // j is another one (must be different)
m.row(i) += d * m.row(j);
i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
do {
j = Eigen::ei_random<int>(0,m.cols()-1);
} while (i==j); // j is another one (must be different)
m.col(i) += d * m.col(j);
}
}
template<typename MatrixType> void qr_non_invertible()
{
/* this test covers the following files: QR.h */
// NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,rows), cols2 = ei_random<int>(20,rows);
int rank = ei_random<int>(1, std::min(rows, cols)-1);
MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
m1 = MatrixType::Random(rows,cols);
if(rows <= cols)
for(int i = rank; i < rows; i++) m1.row(i).setZero();
else
for(int i = rank; i < cols; i++) m1.col(i).setZero();
doSomeRankPreservingOperations(m1);
QR<MatrixType> lu(m1);
// typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel();
// typename LU<MatrixType>::ImageResultType m1image = lu.image();
VERIFY(rank == lu.rank());
VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
VERIFY(!lu.isInjective());
VERIFY(!lu.isInvertible());
VERIFY(lu.isSurjective() == (lu.rank() == rows));
// VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
// VERIFY(m1image.lu().rank() == rank);
// MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols());
// sidebyside << m1, m1image;
// VERIFY(sidebyside.lu().rank() == rank);
m2 = MatrixType::Random(cols,cols2);
m3 = m1*m2;
m2 = MatrixType::Random(cols,cols2);
lu.solve(m3, &m2);
VERIFY_IS_APPROX(m3, m1*m2);
m3 = MatrixType::Random(rows,cols2);
VERIFY(!lu.solve(m3, &m2));
}
template<typename MatrixType> void qr_invertible()
{
/* this test covers the following files: QR.h */
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
int size = ei_random<int>(10,200);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = MatrixType::Random(size,size);
if (ei_is_same_type<RealScalar,float>::ret)
{
// let's build a matrix more stable to inverse
MatrixType a = MatrixType::Random(size,size*2);
m1 += a * a.adjoint();
}
QR<MatrixType> lu(m1);
VERIFY(0 == lu.dimensionOfKernel());
VERIFY(size == lu.rank());
VERIFY(lu.isInjective());
VERIFY(lu.isSurjective());
VERIFY(lu.isInvertible());
// VERIFY(lu.image().lu().isInvertible());
m3 = MatrixType::Random(size,size);
lu.solve(m3, &m2);
//std::cerr << m3 - m1*m2 << "\n\n";
VERIFY_IS_APPROX(m3, m1*m2);
// VERIFY_IS_APPROX(m2, lu.inverse()*m3);
m3 = MatrixType::Random(size,size);
VERIFY(lu.solve(m3, &m2));
}
void test_qr()
{
for(int i = 0; i < 1; i++) {
@ -66,13 +156,17 @@ void test_qr()
CALL_SUBTEST( qr(MatrixXcd(5,5)) );
CALL_SUBTEST( qr(MatrixXcd(7,3)) );
}
// small isFullRank test
{
Matrix3d mat;
mat << 1, 45, 1, 2, 2, 2, 1, 2, 3;
VERIFY(mat.qr().isFullRank());
mat << 1, 1, 1, 2, 2, 2, 1, 2, 3;
VERIFY(!mat.qr().isFullRank());
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( qr_non_invertible<MatrixXf>() );
CALL_SUBTEST( qr_non_invertible<MatrixXd>() );
// TODO fix issue with complex
// CALL_SUBTEST( qr_non_invertible<MatrixXcf>() );
// CALL_SUBTEST( qr_non_invertible<MatrixXcd>() );
CALL_SUBTEST( qr_invertible<MatrixXf>() );
CALL_SUBTEST( qr_invertible<MatrixXd>() );
// TODO fix issue with complex
// CALL_SUBTEST( qr_invertible<MatrixXcf>() );
// CALL_SUBTEST( qr_invertible<MatrixXcd>() );
}
}

View File

@ -193,7 +193,6 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
}
}
m2.endFill();
//std::cerr << m1 << "\n\n" << m2 << "\n";
VERIFY_IS_APPROX(m2,m1);
}