mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-14 20:56:00 +08:00
Merged latest updates from the Eigen trunk.
This commit is contained in:
commit
10a79ca3a3
@ -42,7 +42,7 @@
|
||||
#define EIGEN_USING_STD_MATH(FUNC) using std::FUNC;
|
||||
#endif
|
||||
|
||||
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__)
|
||||
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) && !defined(EIGEN_EXCEPTIONS)
|
||||
#define EIGEN_EXCEPTIONS
|
||||
#endif
|
||||
|
||||
|
@ -21,6 +21,7 @@
|
||||
*/
|
||||
|
||||
#include "src/misc/Solve.h"
|
||||
#include "src/SVD/SVDBase.h"
|
||||
#include "src/SVD/JacobiSVD.h"
|
||||
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
|
||||
#include "src/SVD/JacobiSVD_MKL.h"
|
||||
|
@ -29,6 +29,11 @@ struct traits<ArrayWrapper<ExpressionType> >
|
||||
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
|
||||
{
|
||||
typedef ArrayXpr XprKind;
|
||||
// Let's remove NestByRefBit
|
||||
enum {
|
||||
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
|
||||
Flags = Flags0 & ~NestByRefBit
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
@ -166,6 +171,11 @@ struct traits<MatrixWrapper<ExpressionType> >
|
||||
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
|
||||
{
|
||||
typedef MatrixXpr XprKind;
|
||||
// Let's remove NestByRefBit
|
||||
enum {
|
||||
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
|
||||
Flags = Flags0 & ~NestByRefBit
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -231,7 +231,7 @@ EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest&
|
||||
// FIXME not very good if rhs is real and lhs complex while alpha is real too
|
||||
const Index cols = dest.cols();
|
||||
for (Index j=0; j<cols; ++j)
|
||||
func(dest.col(j), prod.rhs().coeff(j) * prod.lhs());
|
||||
func(dest.col(j), prod.rhs().coeff(0,j) * prod.lhs());
|
||||
}
|
||||
|
||||
// Row major
|
||||
@ -242,7 +242,7 @@ EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest&
|
||||
// FIXME not very good if lhs is real and rhs complex while alpha is real too
|
||||
const Index rows = dest.rows();
|
||||
for (Index i=0; i<rows; ++i)
|
||||
func(dest.row(i), prod.lhs().coeff(i) * prod.rhs());
|
||||
func(dest.row(i), prod.lhs().coeff(i,0) * prod.rhs());
|
||||
}
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
|
@ -12,6 +12,15 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
|
||||
// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
|
||||
#if defined(_WIN32_WCE) && defined(_MSC_VER) && _MSC_VER<=1500
|
||||
long abs(long x) { return (labs(x)); }
|
||||
double abs(double x) { return (fabs(x)); }
|
||||
float abs(float x) { return (fabsf(x)); }
|
||||
long double abs(long double x) { return (fabsl(x)); }
|
||||
#endif
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal \struct global_math_functions_filtering_base
|
||||
@ -308,10 +317,17 @@ struct hypot_impl
|
||||
using std::sqrt;
|
||||
RealScalar _x = abs(x);
|
||||
RealScalar _y = abs(y);
|
||||
RealScalar p = (max)(_x, _y);
|
||||
if(p==RealScalar(0)) return 0;
|
||||
RealScalar q = (min)(_x, _y);
|
||||
RealScalar qp = q/p;
|
||||
Scalar p, qp;
|
||||
if(_x>_y)
|
||||
{
|
||||
p = _x;
|
||||
qp = _y / p;
|
||||
}
|
||||
else
|
||||
{
|
||||
p = _y;
|
||||
qp = _x / p;
|
||||
}
|
||||
return p * sqrt(RealScalar(1) + qp*qp);
|
||||
}
|
||||
};
|
||||
|
@ -81,6 +81,7 @@ template<typename Derived> class MatrixBase
|
||||
using Base::operator-=;
|
||||
using Base::operator*=;
|
||||
using Base::operator/=;
|
||||
using Base::operator*;
|
||||
|
||||
typedef typename Base::CoeffReturnType CoeffReturnType;
|
||||
typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType;
|
||||
|
@ -207,7 +207,7 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
|
||||
const Index packetSize = packet_traits<Scalar>::size;
|
||||
const Index alignedStart = internal::first_aligned(mat);
|
||||
enum {
|
||||
alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit)
|
||||
alignment = (bool(Derived::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) || bool(Derived::Flags & AlignedBit)
|
||||
? Aligned : Unaligned
|
||||
};
|
||||
const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize);
|
||||
|
@ -209,15 +209,9 @@ inline Derived& ArrayBase<Derived>::operator-=(const Scalar& other)
|
||||
template<typename Derived>
|
||||
inline Derived& DenseBase<Derived>::operator/=(const Scalar& other)
|
||||
{
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsInteger,
|
||||
internal::scalar_quotient_op<Scalar>,
|
||||
internal::scalar_product_op<Scalar> >::type BinOp;
|
||||
typedef typename Derived::PlainObject PlainObject;
|
||||
SelfCwiseBinaryOp<BinOp, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
|
||||
Scalar actual_other;
|
||||
if(NumTraits<Scalar>::IsInteger) actual_other = other;
|
||||
else actual_other = Scalar(1)/other;
|
||||
tmp = PlainObject::Constant(rows(),cols(), actual_other);
|
||||
SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
|
||||
tmp = PlainObject::Constant(rows(),cols(), other);
|
||||
return derived();
|
||||
}
|
||||
|
||||
|
@ -20,7 +20,7 @@ inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& sc
|
||||
using std::max;
|
||||
Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
|
||||
|
||||
if (maxCoeff>scale)
|
||||
if(maxCoeff>scale)
|
||||
{
|
||||
ssq = ssq * numext::abs2(scale/maxCoeff);
|
||||
Scalar tmp = Scalar(1)/maxCoeff;
|
||||
@ -29,12 +29,21 @@ inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& sc
|
||||
invScale = NumTraits<Scalar>::highest();
|
||||
scale = Scalar(1)/invScale;
|
||||
}
|
||||
else if(maxCoeff>NumTraits<Scalar>::highest()) // we got a INF
|
||||
{
|
||||
invScale = Scalar(1);
|
||||
scale = maxCoeff;
|
||||
}
|
||||
else
|
||||
{
|
||||
scale = maxCoeff;
|
||||
invScale = tmp;
|
||||
}
|
||||
}
|
||||
else if(maxCoeff!=maxCoeff) // we got a NaN
|
||||
{
|
||||
scale = maxCoeff;
|
||||
}
|
||||
|
||||
// TODO if the maxCoeff is much much smaller than the current scale,
|
||||
// then we can neglect this sub vector
|
||||
@ -55,7 +64,7 @@ blueNorm_impl(const EigenBase<Derived>& _vec)
|
||||
using std::abs;
|
||||
const Derived& vec(_vec.derived());
|
||||
static bool initialized = false;
|
||||
static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
|
||||
static RealScalar b1, b2, s1m, s2m, rbig, relerr;
|
||||
if(!initialized)
|
||||
{
|
||||
int ibeta, it, iemin, iemax, iexp;
|
||||
@ -84,7 +93,6 @@ blueNorm_impl(const EigenBase<Derived>& _vec)
|
||||
iexp = - ((iemax+it)/2);
|
||||
s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range
|
||||
|
||||
overfl = rbig*s2m; // overflow boundary for abig
|
||||
eps = RealScalar(pow(double(ibeta), 1-it));
|
||||
relerr = sqrt(eps); // tolerance for neglecting asml
|
||||
initialized = true;
|
||||
@ -101,13 +109,13 @@ blueNorm_impl(const EigenBase<Derived>& _vec)
|
||||
else if(ax < b1) asml += numext::abs2(ax*s1m);
|
||||
else amed += numext::abs2(ax);
|
||||
}
|
||||
if(amed!=amed)
|
||||
return amed; // we got a NaN
|
||||
if(abig > RealScalar(0))
|
||||
{
|
||||
abig = sqrt(abig);
|
||||
if(abig > overfl)
|
||||
{
|
||||
return rbig;
|
||||
}
|
||||
if(abig > rbig) // overflow, or *this contains INF values
|
||||
return abig; // return INF
|
||||
if(amed > RealScalar(0))
|
||||
{
|
||||
abig = abig/s2m;
|
||||
|
@ -143,7 +143,7 @@ template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f&
|
||||
// so let's enforce it to generate a vfmadd231ps instruction since the most common use case is to accumulate
|
||||
// the result of the product.
|
||||
Packet8f res = c;
|
||||
asm("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
|
||||
__asm__("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
|
||||
return res;
|
||||
#else
|
||||
return _mm256_fmadd_ps(a,b,c);
|
||||
@ -153,7 +153,7 @@ template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d&
|
||||
#if defined(__clang__) || defined(__GNUC__)
|
||||
// see above
|
||||
Packet4d res = c;
|
||||
asm("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
|
||||
__asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
|
||||
return res;
|
||||
#else
|
||||
return _mm256_fmadd_pd(a,b,c);
|
||||
|
@ -52,12 +52,12 @@ typedef uint32x4_t Packet4ui;
|
||||
|
||||
// arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
|
||||
// which available on LLVM and GCC (at least)
|
||||
#if (defined(__has_builtin) && __has_builtin(__builtin_prefetch)) || defined(__GNUC__)
|
||||
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
|
||||
#elif defined __pld
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
|
||||
#elif !defined(__aarch64__)
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) asm volatile ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
|
||||
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
|
||||
#else
|
||||
// by default no explicit prefetching
|
||||
#define EIGEN_ARM_PREFETCH(ADDR)
|
||||
|
@ -167,9 +167,17 @@ template<typename Scalar> struct scalar_hypot_op {
|
||||
EIGEN_USING_STD_MATH(max);
|
||||
EIGEN_USING_STD_MATH(min);
|
||||
using std::sqrt;
|
||||
Scalar p = (max)(_x, _y);
|
||||
Scalar q = (min)(_x, _y);
|
||||
Scalar qp = q/p;
|
||||
Scalar p, qp;
|
||||
if(_x>_y)
|
||||
{
|
||||
p = _x;
|
||||
qp = _y / p;
|
||||
}
|
||||
else
|
||||
{
|
||||
p = _y;
|
||||
qp = _x / p;
|
||||
}
|
||||
return p * sqrt(Scalar(1) + qp*qp);
|
||||
}
|
||||
};
|
||||
|
@ -53,6 +53,8 @@ template< \
|
||||
int RhsStorageOrder, bool ConjugateRhs> \
|
||||
struct general_matrix_matrix_product<Index,EIGTYPE,LhsStorageOrder,ConjugateLhs,EIGTYPE,RhsStorageOrder,ConjugateRhs,ColMajor> \
|
||||
{ \
|
||||
typedef gebp_traits<EIGTYPE,EIGTYPE> Traits; \
|
||||
\
|
||||
static void run(Index rows, Index cols, Index depth, \
|
||||
const EIGTYPE* _lhs, Index lhsStride, \
|
||||
const EIGTYPE* _rhs, Index rhsStride, \
|
||||
|
@ -109,7 +109,7 @@ struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,true, \
|
||||
/* Non-square case - doesn't fit to MKL ?TRMM. Fall to default triangular product or call MKL ?GEMM*/ \
|
||||
if (rows != depth) { \
|
||||
\
|
||||
int nthr = mkl_domain_get_max_threads(MKL_BLAS); \
|
||||
int nthr = mkl_domain_get_max_threads(EIGEN_MKL_DOMAIN_BLAS); \
|
||||
\
|
||||
if (((nthr==1) && (((std::max)(rows,depth)-diagSize)/(double)diagSize < 0.5))) { \
|
||||
/* Most likely no benefit to call TRMM or GEMM from MKL*/ \
|
||||
@ -223,7 +223,7 @@ struct product_triangular_matrix_matrix_trmm<EIGTYPE,Index,Mode,false, \
|
||||
/* Non-square case - doesn't fit to MKL ?TRMM. Fall to default triangular product or call MKL ?GEMM*/ \
|
||||
if (cols != depth) { \
|
||||
\
|
||||
int nthr = mkl_domain_get_max_threads(MKL_BLAS); \
|
||||
int nthr = mkl_domain_get_max_threads(EIGEN_MKL_DOMAIN_BLAS); \
|
||||
\
|
||||
if ((nthr==1) && (((std::max)(cols,depth)-diagSize)/(double)diagSize < 0.5)) { \
|
||||
/* Most likely no benefit to call TRMM or GEMM from MKL*/ \
|
||||
|
@ -76,6 +76,38 @@
|
||||
#include <mkl_lapacke.h>
|
||||
#define EIGEN_MKL_VML_THRESHOLD 128
|
||||
|
||||
/* MKL_DOMAIN_BLAS, etc are defined only in 10.3 update 7 */
|
||||
/* MKL_BLAS, etc are not defined in 11.2 */
|
||||
#ifdef MKL_DOMAIN_ALL
|
||||
#define EIGEN_MKL_DOMAIN_ALL MKL_DOMAIN_ALL
|
||||
#else
|
||||
#define EIGEN_MKL_DOMAIN_ALL MKL_ALL
|
||||
#endif
|
||||
|
||||
#ifdef MKL_DOMAIN_BLAS
|
||||
#define EIGEN_MKL_DOMAIN_BLAS MKL_DOMAIN_BLAS
|
||||
#else
|
||||
#define EIGEN_MKL_DOMAIN_BLAS MKL_BLAS
|
||||
#endif
|
||||
|
||||
#ifdef MKL_DOMAIN_FFT
|
||||
#define EIGEN_MKL_DOMAIN_FFT MKL_DOMAIN_FFT
|
||||
#else
|
||||
#define EIGEN_MKL_DOMAIN_FFT MKL_FFT
|
||||
#endif
|
||||
|
||||
#ifdef MKL_DOMAIN_VML
|
||||
#define EIGEN_MKL_DOMAIN_VML MKL_DOMAIN_VML
|
||||
#else
|
||||
#define EIGEN_MKL_DOMAIN_VML MKL_VML
|
||||
#endif
|
||||
|
||||
#ifdef MKL_DOMAIN_PARDISO
|
||||
#define EIGEN_MKL_DOMAIN_PARDISO MKL_DOMAIN_PARDISO
|
||||
#else
|
||||
#define EIGEN_MKL_DOMAIN_PARDISO MKL_PARDISO
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
typedef std::complex<double> dcomplex;
|
||||
|
@ -107,6 +107,13 @@
|
||||
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE std::ptrdiff_t
|
||||
#endif
|
||||
|
||||
// Cross compiler wrapper around LLVM's __has_builtin
|
||||
#ifdef __has_builtin
|
||||
# define EIGEN_HAS_BUILTIN(x) __has_builtin(x)
|
||||
#else
|
||||
# define EIGEN_HAS_BUILTIN(x) 0
|
||||
#endif
|
||||
|
||||
// A Clang feature extension to determine compiler features.
|
||||
// We use it to determine 'cxx_rvalue_references'
|
||||
#ifndef __has_feature
|
||||
@ -277,7 +284,7 @@ namespace Eigen {
|
||||
|
||||
#if !defined(EIGEN_ASM_COMMENT)
|
||||
#if (defined __GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
|
||||
#define EIGEN_ASM_COMMENT(X) asm("#" X)
|
||||
#define EIGEN_ASM_COMMENT(X) __asm__("#" X)
|
||||
#else
|
||||
#define EIGEN_ASM_COMMENT(X)
|
||||
#endif
|
||||
|
@ -64,7 +64,7 @@
|
||||
// Currently, let's include it only on unix systems:
|
||||
#if defined(__unix__) || defined(__unix)
|
||||
#include <unistd.h>
|
||||
#if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
|
||||
#if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || (defined __PGI) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
|
||||
#define EIGEN_HAS_POSIX_MEMALIGN 1
|
||||
#endif
|
||||
#endif
|
||||
|
@ -383,13 +383,21 @@ struct special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public DenseCo
|
||||
const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
||||
operator*(const OtherScalar& scalar) const
|
||||
{
|
||||
#ifdef EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
|
||||
EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
|
||||
#endif
|
||||
return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
||||
(*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
|
||||
}
|
||||
|
||||
inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
||||
operator*(const OtherScalar& scalar, const Derived& matrix)
|
||||
{ return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
|
||||
{
|
||||
#ifdef EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
|
||||
EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN
|
||||
#endif
|
||||
return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename XprType, typename CastType> struct cast_return_type
|
||||
|
@ -605,7 +605,6 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
||||
if(computeEigenvectors)
|
||||
{
|
||||
Scalar safeNorm2 = Eigen::NumTraits<Scalar>::epsilon();
|
||||
safeNorm2 *= safeNorm2;
|
||||
if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
|
||||
{
|
||||
eivecs.setIdentity();
|
||||
@ -619,7 +618,7 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
||||
Scalar d0 = eivals(2) - eivals(1);
|
||||
Scalar d1 = eivals(1) - eivals(0);
|
||||
int k = d0 > d1 ? 2 : 0;
|
||||
d0 = d0 > d1 ? d1 : d0;
|
||||
d0 = d0 > d1 ? d0 : d1;
|
||||
|
||||
tmp.diagonal().array () -= eivals(k);
|
||||
VectorType cross;
|
||||
@ -627,19 +626,25 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
||||
n = (cross = tmp.row(0).cross(tmp.row(1))).squaredNorm();
|
||||
|
||||
if(n>safeNorm2)
|
||||
{
|
||||
eivecs.col(k) = cross / sqrt(n);
|
||||
}
|
||||
else
|
||||
{
|
||||
n = (cross = tmp.row(0).cross(tmp.row(2))).squaredNorm();
|
||||
|
||||
if(n>safeNorm2)
|
||||
{
|
||||
eivecs.col(k) = cross / sqrt(n);
|
||||
}
|
||||
else
|
||||
{
|
||||
n = (cross = tmp.row(1).cross(tmp.row(2))).squaredNorm();
|
||||
|
||||
if(n>safeNorm2)
|
||||
{
|
||||
eivecs.col(k) = cross / sqrt(n);
|
||||
}
|
||||
else
|
||||
{
|
||||
// the input matrix and/or the eigenvaues probably contains some inf/NaN,
|
||||
@ -659,12 +664,16 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
||||
tmp.diagonal().array() -= eivals(1);
|
||||
|
||||
if(d0<=Eigen::NumTraits<Scalar>::epsilon())
|
||||
{
|
||||
eivecs.col(1) = eivecs.col(k).unitOrthogonal();
|
||||
}
|
||||
else
|
||||
{
|
||||
n = (cross = eivecs.col(k).cross(tmp.row(0).normalized())).squaredNorm();
|
||||
n = (cross = eivecs.col(k).cross(tmp.row(0))).squaredNorm();
|
||||
if(n>safeNorm2)
|
||||
{
|
||||
eivecs.col(1) = cross / sqrt(n);
|
||||
}
|
||||
else
|
||||
{
|
||||
n = (cross = eivecs.col(k).cross(tmp.row(1))).squaredNorm();
|
||||
@ -678,13 +687,14 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
|
||||
else
|
||||
{
|
||||
// we should never reach this point,
|
||||
// if so the last two eigenvalues are likely to ve very closed to each other
|
||||
// if so the last two eigenvalues are likely to be very close to each other
|
||||
eivecs.col(1) = eivecs.col(k).unitOrthogonal();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// make sure that eivecs[1] is orthogonal to eivecs[2]
|
||||
// FIXME: this step should not be needed
|
||||
Scalar d = eivecs.col(1).dot(eivecs.col(k));
|
||||
eivecs.col(1) = (eivecs.col(1) - d * eivecs.col(k)).normalized();
|
||||
}
|
||||
|
@ -120,7 +120,7 @@ template<typename MatrixType,int _Direction> class Homogeneous
|
||||
* Example: \include MatrixBase_homogeneous.cpp
|
||||
* Output: \verbinclude MatrixBase_homogeneous.out
|
||||
*
|
||||
* \sa class Homogeneous
|
||||
* \sa VectorwiseOp::homogeneous(), class Homogeneous
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline typename MatrixBase<Derived>::HomogeneousReturnType
|
||||
@ -137,7 +137,7 @@ MatrixBase<Derived>::homogeneous() const
|
||||
* Example: \include VectorwiseOp_homogeneous.cpp
|
||||
* Output: \verbinclude VectorwiseOp_homogeneous.out
|
||||
*
|
||||
* \sa MatrixBase::homogeneous() */
|
||||
* \sa MatrixBase::homogeneous(), class Homogeneous */
|
||||
template<typename ExpressionType, int Direction>
|
||||
inline Homogeneous<ExpressionType,Direction>
|
||||
VectorwiseOp<ExpressionType,Direction>::homogeneous() const
|
||||
|
@ -39,7 +39,6 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
||||
int maxIters = iters;
|
||||
|
||||
int n = mat.cols();
|
||||
x = precond.solve(x);
|
||||
VectorType r = rhs - mat * x;
|
||||
VectorType r0 = r;
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -424,24 +425,31 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
||||
JacobiRotation<RealScalar> rot1;
|
||||
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
|
||||
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
|
||||
if(t == RealScalar(0))
|
||||
|
||||
if(d == RealScalar(0))
|
||||
{
|
||||
rot1.c() = RealScalar(0);
|
||||
rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
|
||||
rot1.s() = RealScalar(0);
|
||||
rot1.c() = RealScalar(1);
|
||||
}
|
||||
else
|
||||
{
|
||||
RealScalar t2d2 = numext::hypot(t,d);
|
||||
rot1.c() = abs(t)/t2d2;
|
||||
rot1.s() = d/t2d2;
|
||||
if(t<RealScalar(0))
|
||||
rot1.s() = -rot1.s();
|
||||
// If d!=0, then t/d cannot overflow because the magnitude of the
|
||||
// entries forming d are not too small compared to the ones forming t.
|
||||
RealScalar u = t / d;
|
||||
rot1.s() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
|
||||
rot1.c() = rot1.s() * u;
|
||||
}
|
||||
m.applyOnTheLeft(0,1,rot1);
|
||||
j_right->makeJacobi(m,0,1);
|
||||
*j_left = rot1 * j_right->transpose();
|
||||
}
|
||||
|
||||
template<typename _MatrixType, int QRPreconditioner>
|
||||
struct traits<JacobiSVD<_MatrixType,QRPreconditioner> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
@ -498,7 +506,9 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
||||
* \sa MatrixBase::jacobiSvd()
|
||||
*/
|
||||
template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
: public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> >
|
||||
{
|
||||
typedef SVDBase<JacobiSVD> Base;
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
@ -515,13 +525,10 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
|
||||
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
|
||||
MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
|
||||
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
|
||||
MatrixVType;
|
||||
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
||||
typedef typename Base::MatrixUType MatrixUType;
|
||||
typedef typename Base::MatrixVType MatrixVType;
|
||||
typedef typename Base::SingularValuesType SingularValuesType;
|
||||
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
||||
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
|
||||
@ -534,11 +541,6 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
* perform decompositions via JacobiSVD::compute(const MatrixType&).
|
||||
*/
|
||||
JacobiSVD()
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1), m_diagSize(0)
|
||||
{}
|
||||
|
||||
|
||||
@ -549,11 +551,6 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
* \sa JacobiSVD()
|
||||
*/
|
||||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{
|
||||
allocate(rows, cols, computationOptions);
|
||||
}
|
||||
@ -569,11 +566,6 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{
|
||||
compute(matrix, computationOptions);
|
||||
}
|
||||
@ -601,54 +593,6 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
return compute(matrix, m_computationOptions);
|
||||
}
|
||||
|
||||
/** \returns the \a U matrix.
|
||||
*
|
||||
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
||||
* the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
|
||||
*
|
||||
* The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
|
||||
*
|
||||
* This method asserts that you asked for \a U to be computed.
|
||||
*/
|
||||
const MatrixUType& matrixU() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?");
|
||||
return m_matrixU;
|
||||
}
|
||||
|
||||
/** \returns the \a V matrix.
|
||||
*
|
||||
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
||||
* the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
|
||||
*
|
||||
* The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
|
||||
*
|
||||
* This method asserts that you asked for \a V to be computed.
|
||||
*/
|
||||
const MatrixVType& matrixV() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?");
|
||||
return m_matrixV;
|
||||
}
|
||||
|
||||
/** \returns the vector of singular values.
|
||||
*
|
||||
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
|
||||
* returned vector has size \a m. Singular values are always sorted in decreasing order.
|
||||
*/
|
||||
const SingularValuesType& singularValues() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
return m_singularValues;
|
||||
}
|
||||
|
||||
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
|
||||
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
|
||||
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
|
||||
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
|
||||
|
||||
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
@ -667,93 +611,30 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
||||
return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
/** \returns the number of singular values that are not exactly 0 */
|
||||
Index nonzeroSingularValues() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
return m_nonzeroSingularValues;
|
||||
}
|
||||
|
||||
/** \returns the rank of the matrix of which \c *this is the SVD.
|
||||
*
|
||||
* \note This method has to determine which singular values should be considered nonzero.
|
||||
* For that, it uses the threshold value that you can control by calling
|
||||
* setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline Index rank() const
|
||||
{
|
||||
using std::abs;
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
if(m_singularValues.size()==0) return 0;
|
||||
RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
|
||||
Index i = m_nonzeroSingularValues-1;
|
||||
while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
|
||||
return i+1;
|
||||
}
|
||||
|
||||
/** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
|
||||
* which need to determine when singular values are to be considered nonzero.
|
||||
* This is not used for the SVD decomposition itself.
|
||||
*
|
||||
* When it needs to get the threshold value, Eigen calls threshold().
|
||||
* The default is \c NumTraits<Scalar>::epsilon()
|
||||
*
|
||||
* \param threshold The new value to use as the threshold.
|
||||
*
|
||||
* A singular value will be considered nonzero if its value is strictly greater than
|
||||
* \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
|
||||
*
|
||||
* If you want to come back to the default behavior, call setThreshold(Default_t)
|
||||
*/
|
||||
JacobiSVD& setThreshold(const RealScalar& threshold)
|
||||
{
|
||||
m_usePrescribedThreshold = true;
|
||||
m_prescribedThreshold = threshold;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Allows to come back to the default behavior, letting Eigen use its default formula for
|
||||
* determining the threshold.
|
||||
*
|
||||
* You should pass the special object Eigen::Default as parameter here.
|
||||
* \code svd.setThreshold(Eigen::Default); \endcode
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
JacobiSVD& setThreshold(Default_t)
|
||||
{
|
||||
m_usePrescribedThreshold = false;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Returns the threshold that will be used by certain methods such as rank().
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
RealScalar threshold() const
|
||||
{
|
||||
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
|
||||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
: (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
using Base::computeU;
|
||||
using Base::computeV;
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
|
||||
protected:
|
||||
MatrixUType m_matrixU;
|
||||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
using Base::m_matrixU;
|
||||
using Base::m_matrixV;
|
||||
using Base::m_singularValues;
|
||||
using Base::m_isInitialized;
|
||||
using Base::m_isAllocated;
|
||||
using Base::m_usePrescribedThreshold;
|
||||
using Base::m_computeFullU;
|
||||
using Base::m_computeThinU;
|
||||
using Base::m_computeFullV;
|
||||
using Base::m_computeThinV;
|
||||
using Base::m_computationOptions;
|
||||
using Base::m_nonzeroSingularValues;
|
||||
using Base::m_rows;
|
||||
using Base::m_cols;
|
||||
using Base::m_diagSize;
|
||||
using Base::m_prescribedThreshold;
|
||||
WorkMatrixType m_workMatrix;
|
||||
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
||||
bool m_computeFullU, m_computeThinU;
|
||||
bool m_computeFullV, m_computeThinV;
|
||||
unsigned int m_computationOptions;
|
||||
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
||||
RealScalar m_prescribedThreshold;
|
||||
|
||||
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
@ -861,7 +742,8 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
EIGEN_USING_STD_MATH(max);
|
||||
RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
|
||||
abs(m_workMatrix.coeff(q,q))));
|
||||
if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
|
||||
// We compare both values to threshold instead of calling max to be robust to NaN (See bug 791)
|
||||
if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
|
||||
{
|
||||
finished = false;
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
|
||||
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
|
||||
@ -12,8 +13,8 @@
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SVD_H
|
||||
#define EIGEN_SVD_H
|
||||
#ifndef EIGEN_SVDBASE_H
|
||||
#define EIGEN_SVDBASE_H
|
||||
|
||||
namespace Eigen {
|
||||
/** \ingroup SVD_Module
|
||||
@ -21,9 +22,10 @@ namespace Eigen {
|
||||
*
|
||||
* \class SVDBase
|
||||
*
|
||||
* \brief Mother class of SVD classes algorithms
|
||||
* \brief Base class of SVD algorithms
|
||||
*
|
||||
* \tparam Derived the type of the actual SVD decomposition
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
||||
* \f[ A = U S V^* \f]
|
||||
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
|
||||
@ -42,12 +44,12 @@ namespace Eigen {
|
||||
* terminate in finite (and reasonable) time.
|
||||
* \sa MatrixBase::genericSvd()
|
||||
*/
|
||||
template<typename _MatrixType>
|
||||
template<typename Derived>
|
||||
class SVDBase
|
||||
{
|
||||
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
@ -61,46 +63,16 @@ public:
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
|
||||
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
|
||||
MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
|
||||
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
|
||||
MatrixVType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
|
||||
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
||||
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
|
||||
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
||||
WorkMatrixType;
|
||||
|
||||
|
||||
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using custom options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using current options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*
|
||||
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
||||
*/
|
||||
//virtual SVDBase& compute(const MatrixType& matrix) = 0;
|
||||
SVDBase& compute(const MatrixType& matrix);
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
/** \returns the \a U matrix.
|
||||
*
|
||||
* For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
||||
* For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
|
||||
* the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
|
||||
*
|
||||
* The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
|
||||
@ -141,8 +113,6 @@ public:
|
||||
return m_singularValues;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** \returns the number of singular values that are not exactly 0 */
|
||||
Index nonzeroSingularValues() const
|
||||
{
|
||||
@ -150,17 +120,77 @@ public:
|
||||
return m_nonzeroSingularValues;
|
||||
}
|
||||
|
||||
/** \returns the rank of the matrix of which \c *this is the SVD.
|
||||
*
|
||||
* \note This method has to determine which singular values should be considered nonzero.
|
||||
* For that, it uses the threshold value that you can control by calling
|
||||
* setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline Index rank() const
|
||||
{
|
||||
using std::abs;
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
if(m_singularValues.size()==0) return 0;
|
||||
RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
|
||||
Index i = m_nonzeroSingularValues-1;
|
||||
while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
|
||||
return i+1;
|
||||
}
|
||||
|
||||
/** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
|
||||
* which need to determine when singular values are to be considered nonzero.
|
||||
* This is not used for the SVD decomposition itself.
|
||||
*
|
||||
* When it needs to get the threshold value, Eigen calls threshold().
|
||||
* The default is \c NumTraits<Scalar>::epsilon()
|
||||
*
|
||||
* \param threshold The new value to use as the threshold.
|
||||
*
|
||||
* A singular value will be considered nonzero if its value is strictly greater than
|
||||
* \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
|
||||
*
|
||||
* If you want to come back to the default behavior, call setThreshold(Default_t)
|
||||
*/
|
||||
Derived& setThreshold(const RealScalar& threshold)
|
||||
{
|
||||
m_usePrescribedThreshold = true;
|
||||
m_prescribedThreshold = threshold;
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Allows to come back to the default behavior, letting Eigen use its default formula for
|
||||
* determining the threshold.
|
||||
*
|
||||
* You should pass the special object Eigen::Default as parameter here.
|
||||
* \code svd.setThreshold(Eigen::Default); \endcode
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
Derived& setThreshold(Default_t)
|
||||
{
|
||||
m_usePrescribedThreshold = false;
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** Returns the threshold that will be used by certain methods such as rank().
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
RealScalar threshold() const
|
||||
{
|
||||
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
|
||||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
: (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
|
||||
}
|
||||
|
||||
/** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
|
||||
inline bool computeU() const { return m_computeFullU || m_computeThinU; }
|
||||
/** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
|
||||
inline bool computeV() const { return m_computeFullV || m_computeThinV; }
|
||||
|
||||
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
|
||||
|
||||
protected:
|
||||
// return true if already allocated
|
||||
bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
|
||||
@ -168,12 +198,12 @@ protected:
|
||||
MatrixUType m_matrixU;
|
||||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
bool m_isInitialized, m_isAllocated;
|
||||
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
||||
bool m_computeFullU, m_computeThinU;
|
||||
bool m_computeFullV, m_computeThinV;
|
||||
unsigned int m_computationOptions;
|
||||
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
||||
|
||||
RealScalar m_prescribedThreshold;
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
@ -182,8 +212,9 @@ protected:
|
||||
SVDBase()
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
m_rows(-1), m_cols(-1), m_diagSize(0)
|
||||
{}
|
||||
|
||||
|
||||
@ -220,17 +251,13 @@ bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computat
|
||||
m_diagSize = (std::min)(m_rows, m_cols);
|
||||
m_singularValues.resize(m_diagSize);
|
||||
if(RowsAtCompileTime==Dynamic)
|
||||
m_matrixU.resize(m_rows, m_computeFullU ? m_rows
|
||||
: m_computeThinU ? m_diagSize
|
||||
: 0);
|
||||
m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
|
||||
if(ColsAtCompileTime==Dynamic)
|
||||
m_matrixV.resize(m_cols, m_computeFullV ? m_cols
|
||||
: m_computeThinV ? m_diagSize
|
||||
: 0);
|
||||
m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
}// end namespace
|
||||
|
||||
#endif // EIGEN_SVD_H
|
||||
#endif // EIGEN_SVDBASE_H
|
@ -2,6 +2,7 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -153,14 +154,19 @@ void upperbidiagonalization_blocked_helper(MatrixType& A,
|
||||
typename MatrixType::RealScalar *diagonal,
|
||||
typename MatrixType::RealScalar *upper_diagonal,
|
||||
typename MatrixType::Index bs,
|
||||
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic> > X,
|
||||
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic> > Y)
|
||||
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
|
||||
traits<MatrixType>::Flags & RowMajorBit> > X,
|
||||
Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
|
||||
traits<MatrixType>::Flags & RowMajorBit> > Y)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Ref<Matrix<Scalar, Dynamic, 1> > SubColumnType;
|
||||
typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, InnerStride<> > SubRowType;
|
||||
typedef Ref<Matrix<Scalar, Dynamic, Dynamic> > SubMatType;
|
||||
enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
|
||||
typedef InnerStride<int(StorageOrder) == int(ColMajor) ? 1 : Dynamic> ColInnerStride;
|
||||
typedef InnerStride<int(StorageOrder) == int(ColMajor) ? Dynamic : 1> RowInnerStride;
|
||||
typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
|
||||
typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
|
||||
typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType;
|
||||
|
||||
Index brows = A.rows();
|
||||
Index bcols = A.cols();
|
||||
@ -287,8 +293,18 @@ void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagona
|
||||
Index cols = A.cols();
|
||||
Index size = (std::min)(rows, cols);
|
||||
|
||||
Matrix<Scalar,MatrixType::RowsAtCompileTime,Dynamic,ColMajor,MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
|
||||
Matrix<Scalar,MatrixType::ColsAtCompileTime,Dynamic,ColMajor,MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
|
||||
// X and Y are work space
|
||||
enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
|
||||
Matrix<Scalar,
|
||||
MatrixType::RowsAtCompileTime,
|
||||
Dynamic,
|
||||
StorageOrder,
|
||||
MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
|
||||
Matrix<Scalar,
|
||||
MatrixType::ColsAtCompileTime,
|
||||
Dynamic,
|
||||
StorageOrder,
|
||||
MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
|
||||
Index blockSize = (std::min)(maxBlockSize,size);
|
||||
|
||||
Index k = 0;
|
||||
|
@ -15,7 +15,7 @@ namespace Eigen {
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, bool sortedInsertion = false)
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type::Scalar Scalar;
|
||||
typedef typename remove_all<Lhs>::type::Index Index;
|
||||
@ -25,9 +25,11 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
|
||||
Index cols = rhs.outerSize();
|
||||
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
std::vector<bool> mask(rows,false);
|
||||
Matrix<Scalar,Dynamic,1> values(rows);
|
||||
Matrix<Index,Dynamic,1> indices(rows);
|
||||
ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(Scalar, values, rows, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0);
|
||||
|
||||
std::memset(mask,0,sizeof(bool)*rows);
|
||||
|
||||
// estimate the number of non zero entries
|
||||
// given a rhs column containing Y non zeros, we assume that the respective Y columns
|
||||
@ -64,53 +66,51 @@ static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& r
|
||||
values[i] += x * y;
|
||||
}
|
||||
}
|
||||
|
||||
// unordered insertion
|
||||
for(Index k=0; k<nnz; ++k)
|
||||
if(!sortedInsertion)
|
||||
{
|
||||
Index i = indices[k];
|
||||
res.insertBackByOuterInnerUnordered(j,i) = values[i];
|
||||
mask[i] = false;
|
||||
}
|
||||
|
||||
#if 0
|
||||
// alternative ordered insertion code:
|
||||
|
||||
Index t200 = rows/(log2(200)*1.39);
|
||||
Index t = (rows*100)/139;
|
||||
|
||||
// FIXME reserve nnz non zeros
|
||||
// FIXME implement fast sort algorithms for very small nnz
|
||||
// if the result is sparse enough => use a quick sort
|
||||
// otherwise => loop through the entire vector
|
||||
// In order to avoid to perform an expensive log2 when the
|
||||
// result is clearly very sparse we use a linear bound up to 200.
|
||||
//if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
|
||||
//res.startVec(j);
|
||||
if(true)
|
||||
{
|
||||
if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
|
||||
// unordered insertion
|
||||
for(Index k=0; k<nnz; ++k)
|
||||
{
|
||||
Index i = indices[k];
|
||||
res.insertBackByOuterInner(j,i) = values[i];
|
||||
res.insertBackByOuterInnerUnordered(j,i) = values[i];
|
||||
mask[i] = false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// dense path
|
||||
for(Index i=0; i<rows; ++i)
|
||||
// alternative ordered insertion code:
|
||||
const Index t200 = rows/11; // 11 == (log2(200)*1.39)
|
||||
const Index t = (rows*100)/139;
|
||||
|
||||
// FIXME reserve nnz non zeros
|
||||
// FIXME implement faster sorting algorithms for very small nnz
|
||||
// if the result is sparse enough => use a quick sort
|
||||
// otherwise => loop through the entire vector
|
||||
// In order to avoid to perform an expensive log2 when the
|
||||
// result is clearly very sparse we use a linear bound up to 200.
|
||||
if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
|
||||
{
|
||||
if(mask[i])
|
||||
if(nnz>1) std::sort(indices,indices+nnz);
|
||||
for(Index k=0; k<nnz; ++k)
|
||||
{
|
||||
mask[i] = false;
|
||||
Index i = indices[k];
|
||||
res.insertBackByOuterInner(j,i) = values[i];
|
||||
mask[i] = false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// dense path
|
||||
for(Index i=0; i<rows; ++i)
|
||||
{
|
||||
if(mask[i])
|
||||
{
|
||||
mask[i] = false;
|
||||
res.insertBackByOuterInner(j,i) = values[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
||||
res.finalize();
|
||||
}
|
||||
@ -135,12 +135,25 @@ struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,C
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
|
||||
ColMajorMatrix resCol(lhs.rows(),rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
||||
// sort the non zeros:
|
||||
RowMajorMatrix resRow(resCol);
|
||||
res = resRow;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrixAux;
|
||||
typedef typename sparse_eval<ColMajorMatrixAux,ResultType::RowsAtCompileTime,ResultType::ColsAtCompileTime>::type ColMajorMatrix;
|
||||
|
||||
// FIXME, the following heuristic is probably not very good.
|
||||
if(lhs.rows()>=rhs.cols())
|
||||
{
|
||||
ColMajorMatrix resCol(lhs.rows(),rhs.cols());
|
||||
// perform sorted insertion
|
||||
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol, true);
|
||||
res = resCol.markAsRValue();
|
||||
}
|
||||
else
|
||||
{
|
||||
ColMajorMatrixAux resCol(lhs.rows(),rhs.cols());
|
||||
// ressort to transpose to sort the entries
|
||||
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrixAux>(lhs, rhs, resCol, false);
|
||||
RowMajorMatrix resRow(resCol);
|
||||
res = resRow.markAsRValue();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -318,15 +318,6 @@ class DenseTimeSparseProduct
|
||||
DenseTimeSparseProduct& operator=(const DenseTimeSparseProduct&);
|
||||
};
|
||||
|
||||
// sparse * dense
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
|
||||
SparseMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return typename SparseDenseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEDENSEPRODUCT_H
|
||||
|
@ -358,7 +358,8 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
|
||||
/** sparse * dense (returns a dense object unless it is an outer product) */
|
||||
template<typename OtherDerived>
|
||||
const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
|
||||
operator*(const MatrixBase<OtherDerived> &other) const;
|
||||
operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{ return typename SparseDenseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived()); }
|
||||
|
||||
/** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */
|
||||
SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
|
||||
|
@ -109,7 +109,7 @@ class SparseVector
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
|
||||
return coeff(IsColVector ? row : col);
|
||||
return coeffRef(IsColVector ? row : col);
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient value at given index \a i
|
||||
@ -152,6 +152,18 @@ class SparseVector
|
||||
return m_data.value(m_data.size()-1);
|
||||
}
|
||||
|
||||
Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(outer);
|
||||
eigen_assert(outer==0);
|
||||
return insertBackUnordered(inner);
|
||||
}
|
||||
inline Scalar& insertBackUnordered(Index i)
|
||||
{
|
||||
m_data.append(0, i);
|
||||
return m_data.value(m_data.size()-1);
|
||||
}
|
||||
|
||||
inline Scalar& insert(Index row, Index col)
|
||||
{
|
||||
eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
|
||||
|
@ -75,7 +75,7 @@ class SparseQR
|
||||
typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
|
||||
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||||
public:
|
||||
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
|
||||
{ }
|
||||
|
||||
/** Construct a QR factorization of the matrix \a mat.
|
||||
@ -84,7 +84,7 @@ class SparseQR
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
|
||||
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
|
||||
{
|
||||
compute(mat);
|
||||
}
|
||||
@ -262,6 +262,7 @@ class SparseQR
|
||||
IndexVector m_etree; // Column elimination tree
|
||||
IndexVector m_firstRowElt; // First element in each row
|
||||
bool m_isQSorted; // whether Q is sorted or not
|
||||
bool m_isEtreeOk; // whether the elimination tree match the initial input matrix
|
||||
|
||||
template <typename, typename > friend struct SparseQR_QProduct;
|
||||
template <typename > friend struct SparseQRMatrixQReturnType;
|
||||
@ -297,6 +298,7 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
|
||||
// Compute the column elimination tree of the permuted matrix
|
||||
m_outputPerm_c = m_perm_c.inverse();
|
||||
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
||||
m_isEtreeOk = true;
|
||||
|
||||
m_R.resize(m, n);
|
||||
m_Q.resize(m, diagSize);
|
||||
@ -331,6 +333,15 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
ScalarVector tval(m); // The dense vector used to compute the current column
|
||||
RealScalar pivotThreshold = m_threshold;
|
||||
|
||||
m_R.setZero();
|
||||
m_Q.setZero();
|
||||
if(!m_isEtreeOk)
|
||||
{
|
||||
m_outputPerm_c = m_perm_c.inverse();
|
||||
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
|
||||
m_isEtreeOk = true;
|
||||
}
|
||||
|
||||
m_pmat = mat;
|
||||
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
|
||||
// Apply the fill-in reducing permutation lazily:
|
||||
@ -447,7 +458,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
}
|
||||
} // End update current column
|
||||
|
||||
Scalar tau;
|
||||
Scalar tau = RealScalar(0);
|
||||
RealScalar beta = 0;
|
||||
|
||||
if(nonzeroCol < diagSize)
|
||||
@ -461,7 +472,6 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
|
||||
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
tval(Qidx(0)) = 1;
|
||||
}
|
||||
@ -514,6 +524,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
|
||||
|
||||
// Recompute the column elimination tree
|
||||
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
|
||||
m_isEtreeOk = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -29,6 +29,9 @@ abs2() const
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise exponential of *this.
|
||||
*
|
||||
* This function computes the coefficient-wise exponential. The function MatrixBase::exp() in the
|
||||
* unsupported module MatrixFunctions computes the matrix exponential.
|
||||
*
|
||||
* Example: \include Cwise_exp.cpp
|
||||
* Output: \verbinclude Cwise_exp.out
|
||||
@ -43,6 +46,9 @@ exp() const
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise logarithm of *this.
|
||||
*
|
||||
* This function computes the coefficient-wise logarithm. The function MatrixBase::log() in the
|
||||
* unsupported module MatrixFunctions computes the matrix logarithm.
|
||||
*
|
||||
* Example: \include Cwise_log.cpp
|
||||
* Output: \verbinclude Cwise_log.out
|
||||
@ -57,6 +63,9 @@ log() const
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise square root of *this.
|
||||
*
|
||||
* This function computes the coefficient-wise square root. The function MatrixBase::sqrt() in the
|
||||
* unsupported module MatrixFunctions computes the matrix square root.
|
||||
*
|
||||
* Example: \include Cwise_sqrt.cpp
|
||||
* Output: \verbinclude Cwise_sqrt.out
|
||||
@ -71,6 +80,9 @@ sqrt() const
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise cosine of *this.
|
||||
*
|
||||
* This function computes the coefficient-wise cosine. The function MatrixBase::cos() in the
|
||||
* unsupported module MatrixFunctions computes the matrix cosine.
|
||||
*
|
||||
* Example: \include Cwise_cos.cpp
|
||||
* Output: \verbinclude Cwise_cos.out
|
||||
@ -86,6 +98,9 @@ cos() const
|
||||
|
||||
|
||||
/** \returns an expression of the coefficient-wise sine of *this.
|
||||
*
|
||||
* This function computes the coefficient-wise sine. The function MatrixBase::sin() in the
|
||||
* unsupported module MatrixFunctions computes the matrix sine.
|
||||
*
|
||||
* Example: \include Cwise_sin.cpp
|
||||
* Output: \verbinclude Cwise_sin.out
|
||||
@ -155,6 +170,9 @@ atan() const
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise power of *this to the given exponent.
|
||||
*
|
||||
* This function computes the coefficient-wise power. The function MatrixBase::pow() in the
|
||||
* unsupported module MatrixFunctions computes the matrix power.
|
||||
*
|
||||
* Example: \include Cwise_pow.cpp
|
||||
* Output: \verbinclude Cwise_pow.out
|
||||
|
@ -6,19 +6,25 @@ using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(const T& v)
|
||||
EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(T& v)
|
||||
{
|
||||
return v.norm();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DONT_INLINE typename T::Scalar hypotNorm(const T& v)
|
||||
EIGEN_DONT_INLINE typename T::Scalar stableNorm(T& v)
|
||||
{
|
||||
return v.stableNorm();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DONT_INLINE typename T::Scalar hypotNorm(T& v)
|
||||
{
|
||||
return v.hypotNorm();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DONT_INLINE typename T::Scalar blueNorm(const T& v)
|
||||
EIGEN_DONT_INLINE typename T::Scalar blueNorm(T& v)
|
||||
{
|
||||
return v.blueNorm();
|
||||
}
|
||||
@ -217,20 +223,21 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
|
||||
}
|
||||
|
||||
#define BENCH_PERF(NRM) { \
|
||||
float af = 0; double ad = 0; std::complex<float> ac = 0; \
|
||||
Eigen::BenchTimer tf, td, tcf; tf.reset(); td.reset(); tcf.reset();\
|
||||
for (int k=0; k<tries; ++k) { \
|
||||
tf.start(); \
|
||||
for (int i=0; i<iters; ++i) NRM(vf); \
|
||||
for (int i=0; i<iters; ++i) { af += NRM(vf); } \
|
||||
tf.stop(); \
|
||||
} \
|
||||
for (int k=0; k<tries; ++k) { \
|
||||
td.start(); \
|
||||
for (int i=0; i<iters; ++i) NRM(vd); \
|
||||
for (int i=0; i<iters; ++i) { ad += NRM(vd); } \
|
||||
td.stop(); \
|
||||
} \
|
||||
/*for (int k=0; k<std::max(1,tries/3); ++k) { \
|
||||
tcf.start(); \
|
||||
for (int i=0; i<iters; ++i) NRM(vcf); \
|
||||
for (int i=0; i<iters; ++i) { ac += NRM(vcf); } \
|
||||
tcf.stop(); \
|
||||
} */\
|
||||
std::cout << #NRM << "\t" << tf.value() << " " << td.value() << " " << tcf.value() << "\n"; \
|
||||
@ -316,14 +323,17 @@ int main(int argc, char** argv)
|
||||
std::cout << "\n";
|
||||
}
|
||||
|
||||
y = 1;
|
||||
std::cout.precision(4);
|
||||
std::cerr << "Performance (out of cache):\n";
|
||||
int s1 = 1024*1024*32;
|
||||
std::cerr << "Performance (out of cache, " << s1 << "):\n";
|
||||
{
|
||||
int iters = 1;
|
||||
VectorXf vf = VectorXf::Random(1024*1024*32) * y;
|
||||
VectorXd vd = VectorXd::Random(1024*1024*32) * y;
|
||||
VectorXcf vcf = VectorXcf::Random(1024*1024*32) * y;
|
||||
VectorXf vf = VectorXf::Random(s1) * y;
|
||||
VectorXd vd = VectorXd::Random(s1) * y;
|
||||
VectorXcf vcf = VectorXcf::Random(s1) * y;
|
||||
BENCH_PERF(sqsumNorm);
|
||||
BENCH_PERF(stableNorm);
|
||||
BENCH_PERF(blueNorm);
|
||||
BENCH_PERF(pblueNorm);
|
||||
BENCH_PERF(lapackNorm);
|
||||
@ -332,13 +342,14 @@ int main(int argc, char** argv)
|
||||
BENCH_PERF(bl2passNorm);
|
||||
}
|
||||
|
||||
std::cerr << "\nPerformance (in cache):\n";
|
||||
std::cerr << "\nPerformance (in cache, " << 512 << "):\n";
|
||||
{
|
||||
int iters = 100000;
|
||||
VectorXf vf = VectorXf::Random(512) * y;
|
||||
VectorXd vd = VectorXd::Random(512) * y;
|
||||
VectorXcf vcf = VectorXcf::Random(512) * y;
|
||||
BENCH_PERF(sqsumNorm);
|
||||
BENCH_PERF(stableNorm);
|
||||
BENCH_PERF(blueNorm);
|
||||
BENCH_PERF(pblueNorm);
|
||||
BENCH_PERF(lapackNorm);
|
||||
|
@ -9,6 +9,12 @@
|
||||
# EIGEN3_FOUND - system has eigen lib with correct version
|
||||
# EIGEN3_INCLUDE_DIR - the eigen include directory
|
||||
# EIGEN3_VERSION - eigen version
|
||||
#
|
||||
# This module reads hints about search locations from
|
||||
# the following enviroment variables:
|
||||
#
|
||||
# EIGEN3_ROOT
|
||||
# EIGEN3_ROOT_DIR
|
||||
|
||||
# Copyright (c) 2006, 2007 Montel Laurent, <montel@kde.org>
|
||||
# Copyright (c) 2008, 2009 Gael Guennebaud, <g.gael@free.fr>
|
||||
@ -62,6 +68,9 @@ if (EIGEN3_INCLUDE_DIR)
|
||||
else (EIGEN3_INCLUDE_DIR)
|
||||
|
||||
find_path(EIGEN3_INCLUDE_DIR NAMES signature_of_eigen3_matrix_library
|
||||
HINTS
|
||||
ENV EIGEN3_ROOT
|
||||
ENV EIGEN3_ROOT_DIR
|
||||
PATHS
|
||||
${CMAKE_INSTALL_PREFIX}/include
|
||||
${KDE4_INCLUDE_DIR}
|
||||
|
@ -97,6 +97,7 @@ add_dependencies(doc-unsupported-prerequisites unsupported_snippets unsupported_
|
||||
add_custom_target(doc ALL
|
||||
COMMAND doxygen
|
||||
COMMAND doxygen Doxyfile-unsupported
|
||||
COMMAND ${CMAKE_COMMAND} -E copy ${Eigen_BINARY_DIR}/doc/html/group__TopicUnalignedArrayAssert.html ${Eigen_BINARY_DIR}/doc/html/TopicUnalignedArrayAssert.html
|
||||
COMMAND ${CMAKE_COMMAND} -E rename html eigen-doc
|
||||
COMMAND ${CMAKE_COMMAND} -E remove eigen-doc/eigen-doc.tgz
|
||||
COMMAND ${CMAKE_COMMAND} -E tar cfz eigen-doc/eigen-doc.tgz eigen-doc
|
||||
|
@ -6,12 +6,10 @@ foreach(example_src ${examples_SRCS})
|
||||
if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO)
|
||||
target_link_libraries(${example} ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO})
|
||||
endif()
|
||||
get_target_property(example_executable
|
||||
${example} LOCATION)
|
||||
add_custom_command(
|
||||
TARGET ${example}
|
||||
POST_BUILD
|
||||
COMMAND ${example_executable}
|
||||
COMMAND ${example}
|
||||
ARGS >${CMAKE_CURRENT_BINARY_DIR}/${example}.out
|
||||
)
|
||||
add_dependencies(all_examples ${example})
|
||||
|
@ -14,12 +14,10 @@ foreach(snippet_src ${snippets_SRCS})
|
||||
if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO)
|
||||
target_link_libraries(${compile_snippet_target} ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO})
|
||||
endif()
|
||||
get_target_property(compile_snippet_executable
|
||||
${compile_snippet_target} LOCATION)
|
||||
add_custom_command(
|
||||
TARGET ${compile_snippet_target}
|
||||
POST_BUILD
|
||||
COMMAND ${compile_snippet_executable}
|
||||
COMMAND ${compile_snippet_target}
|
||||
ARGS >${CMAKE_CURRENT_BINARY_DIR}/${snippet}.out
|
||||
)
|
||||
add_dependencies(all_snippets ${compile_snippet_target})
|
||||
|
7
doc/snippets/DirectionWise_hnormalized.cpp
Normal file
7
doc/snippets/DirectionWise_hnormalized.cpp
Normal file
@ -0,0 +1,7 @@
|
||||
typedef Matrix<double,4,Dynamic> Matrix4Xd;
|
||||
Matrix4Xd M = Matrix4Xd::Random(4,5);
|
||||
Projective3d P(Matrix4d::Random());
|
||||
cout << "The matrix M is:" << endl << M << endl << endl;
|
||||
cout << "M.colwise().hnormalized():" << endl << M.colwise().hnormalized() << endl << endl;
|
||||
cout << "P*M:" << endl << P*M << endl << endl;
|
||||
cout << "(P*M).colwise().hnormalized():" << endl << (P*M).colwise().hnormalized() << endl << endl;
|
6
doc/snippets/MatrixBase_hnormalized.cpp
Normal file
6
doc/snippets/MatrixBase_hnormalized.cpp
Normal file
@ -0,0 +1,6 @@
|
||||
Vector4d v = Vector4d::Random();
|
||||
Projective3d P(Matrix4d::Random());
|
||||
cout << "v = " << v.transpose() << "]^T" << endl;
|
||||
cout << "v.hnormalized() = " << v.hnormalized().transpose() << "]^T" << endl;
|
||||
cout << "P*v = " << (P*v).transpose() << "]^T" << endl;
|
||||
cout << "(P*v).hnormalized() = " << (P*v).hnormalized().transpose() << "]^T" << endl;
|
6
doc/snippets/MatrixBase_homogeneous.cpp
Normal file
6
doc/snippets/MatrixBase_homogeneous.cpp
Normal file
@ -0,0 +1,6 @@
|
||||
Vector3d v = Vector3d::Random(), w;
|
||||
Projective3d P(Matrix4d::Random());
|
||||
cout << "v = [" << v.transpose() << "]^T" << endl;
|
||||
cout << "h.homogeneous() = [" << v.homogeneous().transpose() << "]^T" << endl;
|
||||
cout << "(P * v.homogeneous()) = [" << (P * v.homogeneous()).transpose() << "]^T" << endl;
|
||||
cout << "(P * v.homogeneous()).hnormalized() = [" << (P * v.homogeneous()).eval().hnormalized().transpose() << "]^T" << endl;
|
7
doc/snippets/VectorwiseOp_homogeneous.cpp
Normal file
7
doc/snippets/VectorwiseOp_homogeneous.cpp
Normal file
@ -0,0 +1,7 @@
|
||||
typedef Matrix<double,3,Dynamic> Matrix3Xd;
|
||||
Matrix3Xd M = Matrix3Xd::Random(3,5);
|
||||
Projective3d P(Matrix4d::Random());
|
||||
cout << "The matrix M is:" << endl << M << endl << endl;
|
||||
cout << "M.colwise().homogeneous():" << endl << M.colwise().homogeneous() << endl << endl;
|
||||
cout << "P * M.colwise().homogeneous():" << endl << P * M.colwise().homogeneous() << endl << endl;
|
||||
cout << "P * M.colwise().homogeneous().hnormalized(): " << endl << (P * M.colwise().homogeneous()).colwise().hnormalized() << endl << endl;
|
@ -1,4 +1,3 @@
|
||||
|
||||
if(NOT EIGEN_TEST_NOQT)
|
||||
find_package(Qt4)
|
||||
if(QT4_FOUND)
|
||||
@ -6,7 +5,6 @@ if(NOT EIGEN_TEST_NOQT)
|
||||
endif()
|
||||
endif(NOT EIGEN_TEST_NOQT)
|
||||
|
||||
|
||||
if(QT4_FOUND)
|
||||
add_executable(Tutorial_sparse_example Tutorial_sparse_example.cpp Tutorial_sparse_example_details.cpp)
|
||||
target_link_libraries(Tutorial_sparse_example ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO} ${QT_QTCORE_LIBRARY} ${QT_QTGUI_LIBRARY})
|
||||
@ -27,14 +25,10 @@ if(EIGEN_COMPILER_SUPPORT_CPP11)
|
||||
add_dependencies(all_examples random_cpp11)
|
||||
ei_add_target_property(random_cpp11 COMPILE_FLAGS "-std=c++11")
|
||||
|
||||
get_target_property(random_cpp11_exec
|
||||
random_cpp11 LOCATION)
|
||||
add_custom_command(
|
||||
TARGET random_cpp11
|
||||
POST_BUILD
|
||||
COMMAND ${random_cpp11_exec}
|
||||
COMMAND random_cpp11
|
||||
ARGS >${CMAKE_CURRENT_BINARY_DIR}/random_cpp11.out
|
||||
)
|
||||
|
||||
|
||||
endif()
|
@ -29,7 +29,21 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
MatrixType a1 = MatrixType::Random(rows,cols);
|
||||
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
||||
MatrixType symmC = symmA;
|
||||
|
||||
// randomly nullify some rows/columns
|
||||
{
|
||||
Index count = 1;//internal::random<Index>(-cols,cols);
|
||||
for(Index k=0; k<count; ++k)
|
||||
{
|
||||
Index i = internal::random<Index>(0,cols-1);
|
||||
symmA.row(i).setZero();
|
||||
symmA.col(i).setZero();
|
||||
}
|
||||
}
|
||||
|
||||
symmA.template triangularView<StrictlyUpper>().setZero();
|
||||
symmC.template triangularView<StrictlyUpper>().setZero();
|
||||
|
||||
MatrixType b = MatrixType::Random(rows,cols);
|
||||
MatrixType b1 = MatrixType::Random(rows,cols);
|
||||
@ -40,7 +54,7 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
SelfAdjointEigenSolver<MatrixType> eiDirect;
|
||||
eiDirect.computeDirect(symmA);
|
||||
// generalized eigen pb
|
||||
GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
|
||||
GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);
|
||||
|
||||
VERIFY_IS_EQUAL(eiSymm.info(), Success);
|
||||
VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
|
||||
@ -57,27 +71,28 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
|
||||
|
||||
// generalized eigen problem Ax = lBx
|
||||
eiSymmGen.compute(symmA, symmB,Ax_lBx);
|
||||
eiSymmGen.compute(symmC, symmB,Ax_lBx);
|
||||
VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
|
||||
VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
|
||||
VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
|
||||
symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
||||
|
||||
// generalized eigen problem BAx = lx
|
||||
eiSymmGen.compute(symmA, symmB,BAx_lx);
|
||||
eiSymmGen.compute(symmC, symmB,BAx_lx);
|
||||
VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
|
||||
VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
|
||||
VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
|
||||
(eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
||||
|
||||
// generalized eigen problem ABx = lx
|
||||
eiSymmGen.compute(symmA, symmB,ABx_lx);
|
||||
eiSymmGen.compute(symmC, symmB,ABx_lx);
|
||||
VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
|
||||
VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
|
||||
VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
|
||||
(eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
||||
|
||||
|
||||
eiSymm.compute(symmC);
|
||||
MatrixType sqrtSymmA = eiSymm.operatorSqrt();
|
||||
VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
|
||||
VERIFY_IS_APPROX(sqrtSymmA, symmA.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
|
||||
VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
|
||||
VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
|
||||
|
||||
MatrixType id = MatrixType::Identity(rows, cols);
|
||||
VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
|
||||
@ -95,9 +110,9 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
|
||||
|
||||
// test Tridiagonalization's methods
|
||||
Tridiagonalization<MatrixType> tridiag(symmA);
|
||||
Tridiagonalization<MatrixType> tridiag(symmC);
|
||||
// FIXME tridiag.matrixQ().adjoint() does not work
|
||||
VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
|
||||
VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
|
||||
|
||||
// Test computation of eigenvalues from tridiagonal matrix
|
||||
if(rows > 1)
|
||||
@ -111,8 +126,8 @@ template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
||||
if (rows > 1)
|
||||
{
|
||||
// Test matrix with NaN
|
||||
symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
||||
SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA);
|
||||
symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
||||
SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC);
|
||||
VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
|
||||
}
|
||||
}
|
||||
@ -122,8 +137,10 @@ void test_eigensolver_selfadjoint()
|
||||
int s = 0;
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
// very important to test 3x3 and 2x2 matrices since we provide special paths for them
|
||||
CALL_SUBTEST_1( selfadjointeigensolver(Matrix2f()) );
|
||||
CALL_SUBTEST_1( selfadjointeigensolver(Matrix2d()) );
|
||||
CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) );
|
||||
CALL_SUBTEST_1( selfadjointeigensolver(Matrix3d()) );
|
||||
CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
|
||||
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
||||
CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) );
|
||||
|
@ -315,16 +315,30 @@ void jacobisvd_inf_nan()
|
||||
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
|
||||
svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
|
||||
|
||||
Scalar some_nan = zero<Scalar>() / zero<Scalar>();
|
||||
VERIFY(some_nan != some_nan);
|
||||
svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
|
||||
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
|
||||
VERIFY(nan != nan);
|
||||
svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
|
||||
|
||||
MatrixType m = MatrixType::Zero(10,10);
|
||||
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
|
||||
m = MatrixType::Zero(10,10);
|
||||
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan;
|
||||
m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
|
||||
// regression test for bug 791
|
||||
m.resize(3,3);
|
||||
m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5,
|
||||
0, -0.5, 0,
|
||||
nan, 0, 0;
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
|
||||
m.resize(4,4);
|
||||
m << 1, 0, 0, 0,
|
||||
0, 3, 1, 2e-308,
|
||||
1, 0, 1, nan,
|
||||
0, nan, nan, 0;
|
||||
svd.compute(m, ComputeFullU | ComputeFullV);
|
||||
}
|
||||
|
||||
@ -340,11 +354,33 @@ void jacobisvd_underoverflow()
|
||||
Matrix2d M;
|
||||
M << -7.90884e-313, -4.94e-324,
|
||||
0, 5.60844e-313;
|
||||
JacobiSVD<Matrix2d> svd;
|
||||
svd.compute(M,ComputeFullU|ComputeFullV);
|
||||
jacobisvd_check_full(M,svd);
|
||||
|
||||
VectorXd value_set(9);
|
||||
value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223;
|
||||
Array4i id(0,0,0,0);
|
||||
int k = 0;
|
||||
do
|
||||
{
|
||||
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
|
||||
svd.compute(M,ComputeFullU|ComputeFullV);
|
||||
jacobisvd_check_full(M,svd);
|
||||
|
||||
id(k)++;
|
||||
if(id(k)>=value_set.size())
|
||||
{
|
||||
while(k<3 && id(k)>=value_set.size()) id(++k)++;
|
||||
id.head(k).setZero();
|
||||
k=0;
|
||||
}
|
||||
|
||||
} while((id<int(value_set.size())).all());
|
||||
|
||||
#if defined __INTEL_COMPILER
|
||||
#pragma warning pop
|
||||
#endif
|
||||
JacobiSVD<Matrix2d> svd;
|
||||
svd.compute(M); // just check we don't loop indefinitely
|
||||
|
||||
// Check for overflow:
|
||||
Matrix3d M3;
|
||||
@ -353,7 +389,8 @@ void jacobisvd_underoverflow()
|
||||
-8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;
|
||||
|
||||
JacobiSVD<Matrix3d> svd3;
|
||||
svd3.compute(M3); // just check we don't loop indefinitely
|
||||
svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely
|
||||
jacobisvd_check_full(M3,svd3);
|
||||
}
|
||||
|
||||
void jacobisvd_preallocate()
|
||||
@ -437,6 +474,7 @@ void test_jacobisvd()
|
||||
|
||||
// Test on inf/nan matrix
|
||||
CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
|
||||
CALL_SUBTEST_10( jacobisvd_inf_nan<MatrixXd>() );
|
||||
}
|
||||
|
||||
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
|
||||
|
@ -2,11 +2,16 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
static bool g_called;
|
||||
|
||||
#define EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN { g_called = true; }
|
||||
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType> void linearStructure(const MatrixType& m)
|
||||
@ -68,6 +73,24 @@ template<typename MatrixType> void linearStructure(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
|
||||
}
|
||||
|
||||
// Make sure that complex * real and real * complex are properly optimized
|
||||
template<typename MatrixType> void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
|
||||
RealScalar s = internal::random<RealScalar>();
|
||||
MatrixType m1 = MatrixType::Random(rows, cols);
|
||||
|
||||
g_called = false;
|
||||
VERIFY_IS_APPROX(s*m1, Scalar(s)*m1);
|
||||
VERIFY(g_called && "real * matrix<complex> not properly optimized");
|
||||
|
||||
g_called = false;
|
||||
VERIFY_IS_APPROX(m1*s, m1*Scalar(s));
|
||||
VERIFY(g_called && "matrix<complex> * real not properly optimized");
|
||||
}
|
||||
|
||||
void test_linearstructure()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
@ -80,5 +103,8 @@ void test_linearstructure()
|
||||
CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
||||
CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
|
||||
CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
||||
|
||||
CALL_SUBTEST_10( real_complex<Matrix4cd>() );
|
||||
CALL_SUBTEST_10( real_complex<MatrixXcf>(10,10) );
|
||||
}
|
||||
}
|
||||
|
31
test/main.h
31
test/main.h
@ -17,13 +17,36 @@
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
#include <typeinfo>
|
||||
|
||||
// The following includes of STL headers have to be done _before_ the
|
||||
// definition of macros min() and max(). The reason is that many STL
|
||||
// implementations will not work properly as the min and max symbols collide
|
||||
// with the STL functions std:min() and std::max(). The STL headers may check
|
||||
// for the macro definition of min/max and issue a warning or undefine the
|
||||
// macros.
|
||||
//
|
||||
// Still, Windows defines min() and max() in windef.h as part of the regular
|
||||
// Windows system interfaces and many other Windows APIs depend on these
|
||||
// macros being available. To prevent the macro expansion of min/max and to
|
||||
// make Eigen compatible with the Windows environment all function calls of
|
||||
// std::min() and std::max() have to be written with parenthesis around the
|
||||
// function name.
|
||||
//
|
||||
// All STL headers used by Eigen should be included here. Because main.h is
|
||||
// included before any Eigen header and because the STL headers are guarded
|
||||
// against multiple inclusions, no STL header will see our own min/max macro
|
||||
// definitions.
|
||||
#include <limits>
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
#include <complex>
|
||||
#include <deque>
|
||||
#include <queue>
|
||||
#include <list>
|
||||
|
||||
// To test that all calls from Eigen code to std::min() and std::max() are
|
||||
// protected by parenthesis against macro expansion, the min()/max() macros
|
||||
// are defined here and any not-parenthesized min/max call will cause a
|
||||
// compiler error.
|
||||
#define min(A,B) please_protect_your_min_with_parentheses
|
||||
#define max(A,B) please_protect_your_max_with_parentheses
|
||||
|
||||
@ -76,6 +99,10 @@ namespace Eigen
|
||||
|
||||
#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "")
|
||||
|
||||
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__)
|
||||
#define EIGEN_EXCEPTIONS
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_NO_ASSERTION_CHECKING
|
||||
|
||||
namespace Eigen
|
||||
@ -172,7 +199,7 @@ namespace Eigen
|
||||
|
||||
#ifndef VERIFY_RAISES_ASSERT
|
||||
#define VERIFY_RAISES_ASSERT(a) \
|
||||
std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled";
|
||||
std::cout << "Can't VERIFY_RAISES_ASSERT( " #a " ) with exceptions disabled\n";
|
||||
#endif
|
||||
|
||||
#if !defined(__CUDACC__)
|
||||
|
@ -139,4 +139,12 @@ template<typename MatrixType> void product(const MatrixType& m)
|
||||
// inner product
|
||||
Scalar x = square2.row(c) * square2.col(c2);
|
||||
VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum());
|
||||
|
||||
// outer product
|
||||
VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
|
||||
VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose());
|
||||
VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
|
||||
VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols));
|
||||
VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols));
|
||||
VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols));
|
||||
}
|
||||
|
@ -54,6 +54,8 @@ template<typename Scalar> void test_sparseqr_scalar()
|
||||
|
||||
b = dA * DenseVector::Random(A.cols());
|
||||
solver.compute(A);
|
||||
if(internal::random<float>(0,1)>0.5)
|
||||
solver.factorize(A); // this checks that calling analyzePattern is not needed if the pattern do not change.
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse QR factorization failed\n";
|
||||
|
@ -1,7 +1,7 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -14,6 +14,21 @@ template<typename T> bool isNotNaN(const T& x)
|
||||
return x==x;
|
||||
}
|
||||
|
||||
template<typename T> bool isNaN(const T& x)
|
||||
{
|
||||
return x!=x;
|
||||
}
|
||||
|
||||
template<typename T> bool isInf(const T& x)
|
||||
{
|
||||
return x > NumTraits<T>::highest();
|
||||
}
|
||||
|
||||
template<typename T> bool isMinusInf(const T& x)
|
||||
{
|
||||
return x < NumTraits<T>::lowest();
|
||||
}
|
||||
|
||||
// workaround aggressive optimization in ICC
|
||||
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
|
||||
|
||||
@ -106,6 +121,58 @@ template<typename MatrixType> void stable_norm(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm());
|
||||
VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm());
|
||||
VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm());
|
||||
|
||||
// test NaN, +inf, -inf
|
||||
MatrixType v;
|
||||
Index i = internal::random<Index>(0,rows-1);
|
||||
Index j = internal::random<Index>(0,cols-1);
|
||||
|
||||
// NaN
|
||||
{
|
||||
v = vrand;
|
||||
v(i,j) = RealScalar(0)/RealScalar(0);
|
||||
VERIFY(!isFinite(v.squaredNorm())); VERIFY(isNaN(v.squaredNorm()));
|
||||
VERIFY(!isFinite(v.norm())); VERIFY(isNaN(v.norm()));
|
||||
VERIFY(!isFinite(v.stableNorm())); VERIFY(isNaN(v.stableNorm()));
|
||||
VERIFY(!isFinite(v.blueNorm())); VERIFY(isNaN(v.blueNorm()));
|
||||
VERIFY(!isFinite(v.hypotNorm())); VERIFY(isNaN(v.hypotNorm()));
|
||||
}
|
||||
|
||||
// +inf
|
||||
{
|
||||
v = vrand;
|
||||
v(i,j) = RealScalar(1)/RealScalar(0);
|
||||
VERIFY(!isFinite(v.squaredNorm())); VERIFY(isInf(v.squaredNorm()));
|
||||
VERIFY(!isFinite(v.norm())); VERIFY(isInf(v.norm()));
|
||||
VERIFY(!isFinite(v.stableNorm())); VERIFY(isInf(v.stableNorm()));
|
||||
VERIFY(!isFinite(v.blueNorm())); VERIFY(isInf(v.blueNorm()));
|
||||
VERIFY(!isFinite(v.hypotNorm())); VERIFY(isInf(v.hypotNorm()));
|
||||
}
|
||||
|
||||
// -inf
|
||||
{
|
||||
v = vrand;
|
||||
v(i,j) = RealScalar(-1)/RealScalar(0);
|
||||
VERIFY(!isFinite(v.squaredNorm())); VERIFY(isInf(v.squaredNorm()));
|
||||
VERIFY(!isFinite(v.norm())); VERIFY(isInf(v.norm()));
|
||||
VERIFY(!isFinite(v.stableNorm())); VERIFY(isInf(v.stableNorm()));
|
||||
VERIFY(!isFinite(v.blueNorm())); VERIFY(isInf(v.blueNorm()));
|
||||
VERIFY(!isFinite(v.hypotNorm())); VERIFY(isInf(v.hypotNorm()));
|
||||
}
|
||||
|
||||
// mix
|
||||
{
|
||||
Index i2 = internal::random<Index>(0,rows-1);
|
||||
Index j2 = internal::random<Index>(0,cols-1);
|
||||
v = vrand;
|
||||
v(i,j) = RealScalar(-1)/RealScalar(0);
|
||||
v(i2,j2) = RealScalar(0)/RealScalar(0);
|
||||
VERIFY(!isFinite(v.squaredNorm())); VERIFY(isNaN(v.squaredNorm()));
|
||||
VERIFY(!isFinite(v.norm())); VERIFY(isNaN(v.norm()));
|
||||
VERIFY(!isFinite(v.stableNorm())); VERIFY(isNaN(v.stableNorm()));
|
||||
VERIFY(!isFinite(v.blueNorm())); VERIFY(isNaN(v.blueNorm()));
|
||||
VERIFY(!isFinite(v.hypotNorm())); VERIFY(isNaN(v.hypotNorm()));
|
||||
}
|
||||
}
|
||||
|
||||
void test_stable_norm()
|
||||
|
@ -35,7 +35,7 @@ void test_upperbidiagonalization()
|
||||
CALL_SUBTEST_1( upperbidiag(MatrixXf(3,3)) );
|
||||
CALL_SUBTEST_2( upperbidiag(MatrixXd(17,12)) );
|
||||
CALL_SUBTEST_3( upperbidiag(MatrixXcf(20,20)) );
|
||||
CALL_SUBTEST_4( upperbidiag(MatrixXcd(16,15)) );
|
||||
CALL_SUBTEST_4( upperbidiag(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(16,15)) );
|
||||
CALL_SUBTEST_5( upperbidiag(Matrix<float,6,4>()) );
|
||||
CALL_SUBTEST_6( upperbidiag(Matrix<float,5,5>()) );
|
||||
CALL_SUBTEST_7( upperbidiag(Matrix<double,4,3>()) );
|
||||
|
26
unsupported/Eigen/BDCSVD
Normal file
26
unsupported/Eigen/BDCSVD
Normal file
@ -0,0 +1,26 @@
|
||||
#ifndef EIGEN_BDCSVD_MODULE_H
|
||||
#define EIGEN_BDCSVD_MODULE_H
|
||||
|
||||
#include <Eigen/SVD>
|
||||
|
||||
#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \defgroup BDCSVD_Module BDCSVD module
|
||||
*
|
||||
*
|
||||
*
|
||||
* This module provides Divide & Conquer SVD decomposition for matrices (both real and complex).
|
||||
* This decomposition is accessible via the following MatrixBase method:
|
||||
* - MatrixBase::bdcSvd()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/BDCSVD>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/BDCSVD/BDCSVD.h"
|
||||
|
||||
#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_BDCSVD_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -82,7 +82,9 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
|
||||
\param[in] M a square matrix.
|
||||
\returns expression representing \f$ \cos(M) \f$.
|
||||
|
||||
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
|
||||
This function computes the matrix cosine. Use ArrayBase::cos() for computing the entry-wise cosine.
|
||||
|
||||
The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
|
||||
|
||||
\sa \ref matrixbase_sin "sin()" for an example.
|
||||
|
||||
@ -123,6 +125,9 @@ differential equations: the solution of \f$ y' = My \f$ with the
|
||||
initial condition \f$ y(0) = y_0 \f$ is given by
|
||||
\f$ y(t) = \exp(M) y_0 \f$.
|
||||
|
||||
The matrix exponential is different from applying the exp function to all the entries in the matrix.
|
||||
Use ArrayBase::exp() if you want to do the latter.
|
||||
|
||||
The cost of the computation is approximately \f$ 20 n^3 \f$ for
|
||||
matrices of size \f$ n \f$. The number 20 depends weakly on the
|
||||
norm of the matrix.
|
||||
@ -177,6 +182,9 @@ the scalar logarithm, the equation \f$ \exp(X) = M \f$ may have
|
||||
multiple solutions; this function returns a matrix whose eigenvalues
|
||||
have imaginary part in the interval \f$ (-\pi,\pi] \f$.
|
||||
|
||||
The matrix logarithm is different from applying the log function to all the entries in the matrix.
|
||||
Use ArrayBase::log() if you want to do the latter.
|
||||
|
||||
In the real case, the matrix \f$ M \f$ should be invertible and
|
||||
it should have no eigenvalues which are real and negative (pairs of
|
||||
complex conjugate eigenvalues are allowed). In the complex case, it
|
||||
@ -232,7 +240,8 @@ const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) con
|
||||
|
||||
The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$,
|
||||
where exp denotes the matrix exponential, and log denotes the matrix
|
||||
logarithm.
|
||||
logarithm. This is different from raising all the entries in the matrix
|
||||
to the p-th power. Use ArrayBase::pow() if you want to do the latter.
|
||||
|
||||
If \p p is complex, the scalar type of \p M should be the type of \p
|
||||
p . \f$ M^p \f$ simply evaluates into \f$ \exp(p \log(M)) \f$.
|
||||
@ -391,7 +400,9 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
|
||||
\param[in] M a square matrix.
|
||||
\returns expression representing \f$ \sin(M) \f$.
|
||||
|
||||
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
|
||||
This function computes the matrix sine. Use ArrayBase::sin() for computing the entry-wise sine.
|
||||
|
||||
The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
|
||||
|
||||
Example: \include MatrixSine.cpp
|
||||
Output: \verbinclude MatrixSine.out
|
||||
@ -428,7 +439,9 @@ const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
|
||||
|
||||
The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$
|
||||
whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then
|
||||
\f$ S^2 = M \f$.
|
||||
\f$ S^2 = M \f$. This is different from taking the square root of all
|
||||
the entries in the matrix; use ArrayBase::sqrt() if you want to do the
|
||||
latter.
|
||||
|
||||
In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and
|
||||
it should have no eigenvalues which are real and negative (pairs of
|
||||
|
@ -1,35 +0,0 @@
|
||||
#ifndef EIGEN_SVD_MODULE_H
|
||||
#define EIGEN_SVD_MODULE_H
|
||||
|
||||
#include <Eigen/QR>
|
||||
#include <Eigen/Householder>
|
||||
#include <Eigen/Jacobi>
|
||||
|
||||
#include "../../Eigen/src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \defgroup SVD_Module SVD module
|
||||
*
|
||||
*
|
||||
*
|
||||
* This module provides SVD decomposition for matrices (both real and complex).
|
||||
* This decomposition is accessible via the following MatrixBase method:
|
||||
* - MatrixBase::jacobiSvd()
|
||||
*
|
||||
* \code
|
||||
* #include <Eigen/SVD>
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "../../Eigen/src/misc/Solve.h"
|
||||
#include "../../Eigen/src/SVD/UpperBidiagonalization.h"
|
||||
#include "src/SVD/SVDBase.h"
|
||||
#include "src/SVD/JacobiSVD.h"
|
||||
#include "src/SVD/BDCSVD.h"
|
||||
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
|
||||
#include "../../Eigen/src/SVD/JacobiSVD_MKL.h"
|
||||
#endif
|
||||
|
||||
#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
|
||||
|
||||
#endif // EIGEN_SVD_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
@ -24,6 +24,20 @@
|
||||
#define ALGOSWAP 16
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename _MatrixType> class BDCSVD;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType>
|
||||
struct traits<BDCSVD<_MatrixType> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
*
|
||||
*
|
||||
@ -36,9 +50,9 @@ namespace Eigen {
|
||||
* It should be used to speed up the calcul of SVD for big matrices.
|
||||
*/
|
||||
template<typename _MatrixType>
|
||||
class BDCSVD : public SVDBase<_MatrixType>
|
||||
class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
|
||||
{
|
||||
typedef SVDBase<_MatrixType> Base;
|
||||
typedef SVDBase<BDCSVD> Base;
|
||||
|
||||
public:
|
||||
using Base::rows;
|
||||
@ -77,9 +91,7 @@ public:
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via BDCSVD::compute(const MatrixType&).
|
||||
*/
|
||||
BDCSVD()
|
||||
: SVDBase<_MatrixType>::SVDBase(),
|
||||
algoswap(ALGOSWAP), m_numIters(0)
|
||||
BDCSVD() : algoswap(ALGOSWAP), m_numIters(0)
|
||||
{}
|
||||
|
||||
|
||||
@ -90,8 +102,7 @@ public:
|
||||
* \sa BDCSVD()
|
||||
*/
|
||||
BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
: SVDBase<_MatrixType>::SVDBase(),
|
||||
algoswap(ALGOSWAP), m_numIters(0)
|
||||
: algoswap(ALGOSWAP), m_numIters(0)
|
||||
{
|
||||
allocate(rows, cols, computationOptions);
|
||||
}
|
||||
@ -107,8 +118,7 @@ public:
|
||||
* available with the (non - default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
: SVDBase<_MatrixType>::SVDBase(),
|
||||
algoswap(ALGOSWAP), m_numIters(0)
|
||||
: algoswap(ALGOSWAP), m_numIters(0)
|
||||
{
|
||||
compute(matrix, computationOptions);
|
||||
}
|
||||
@ -116,6 +126,7 @@ public:
|
||||
~BDCSVD()
|
||||
{
|
||||
}
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using custom options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
@ -126,7 +137,7 @@ public:
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non - default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using current options.
|
||||
*
|
||||
@ -134,7 +145,7 @@ public:
|
||||
*
|
||||
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
||||
*/
|
||||
SVDBase<MatrixType>& compute(const MatrixType& matrix)
|
||||
BDCSVD& compute(const MatrixType& matrix)
|
||||
{
|
||||
return compute(matrix, this->m_computationOptions);
|
||||
}
|
||||
@ -160,8 +171,8 @@ public:
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(this->m_isInitialized && "BDCSVD is not initialized.");
|
||||
eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() &&
|
||||
"BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
eigen_assert(computeU() && computeV() &&
|
||||
"BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
@ -196,6 +207,9 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
using Base::computeU;
|
||||
using Base::computeV;
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
|
||||
@ -229,7 +243,7 @@ template<typename MatrixType>
|
||||
void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
||||
{
|
||||
isTranspose = (cols > rows);
|
||||
if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
|
||||
if (Base::allocate(rows, cols, computationOptions)) return;
|
||||
m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
|
||||
if (isTranspose){
|
||||
compU = this->computeU();
|
||||
@ -262,8 +276,7 @@ void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computati
|
||||
|
||||
// Methode which compute the BDCSVD for the int
|
||||
template<>
|
||||
SVDBase<Matrix<int, Dynamic, Dynamic> >&
|
||||
BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
|
||||
BDCSVD<Matrix<int, Dynamic, Dynamic> >& BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
this->m_nonzeroSingularValues = 0;
|
||||
m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
|
||||
@ -279,8 +292,7 @@ BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsign
|
||||
|
||||
// Methode which compute the BDCSVD
|
||||
template<typename MatrixType>
|
||||
SVDBase<MatrixType>&
|
||||
BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
{
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
using std::abs;
|
6
unsupported/Eigen/src/BDCSVD/CMakeLists.txt
Normal file
6
unsupported/Eigen/src/BDCSVD/CMakeLists.txt
Normal file
@ -0,0 +1,6 @@
|
||||
FILE(GLOB Eigen_BDCSVD_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_BDCSVD_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}unsupported/Eigen/src/BDCSVD COMPONENT Devel
|
||||
)
|
@ -12,3 +12,4 @@ ADD_SUBDIRECTORY(Skyline)
|
||||
ADD_SUBDIRECTORY(SparseExtra)
|
||||
ADD_SUBDIRECTORY(KroneckerProduct)
|
||||
ADD_SUBDIRECTORY(Splines)
|
||||
ADD_SUBDIRECTORY(BDCSVD)
|
||||
|
@ -27,7 +27,7 @@ namespace internal {
|
||||
* \param iters on input: maximum number of iterations to perform
|
||||
* on output: number of iterations performed
|
||||
* \param restart number of iterations for a restart
|
||||
* \param tol_error on input: residual tolerance
|
||||
* \param tol_error on input: relative residual tolerance
|
||||
* on output: residuum achieved
|
||||
*
|
||||
* \sa IterativeMethods::bicgstab()
|
||||
@ -70,18 +70,24 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
||||
|
||||
const int m = mat.rows();
|
||||
|
||||
VectorType p0 = rhs - mat*x;
|
||||
// residual and preconditioned residual
|
||||
const VectorType p0 = rhs - mat*x;
|
||||
VectorType r0 = precond.solve(p0);
|
||||
|
||||
const RealScalar r0Norm = r0.norm();
|
||||
|
||||
// is initial guess already good enough?
|
||||
if(abs(r0.norm()) < tol) {
|
||||
if(r0Norm == 0) {
|
||||
tol_error=0;
|
||||
return true;
|
||||
}
|
||||
|
||||
// storage for Hessenberg matrix and Householder data
|
||||
FMatrixType H = FMatrixType::Zero(m, restart + 1);
|
||||
VectorType w = VectorType::Zero(restart + 1);
|
||||
|
||||
FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix
|
||||
VectorType tau = VectorType::Zero(restart + 1);
|
||||
|
||||
// storage for Jacobi rotations
|
||||
std::vector < JacobiRotation < Scalar > > G(restart);
|
||||
|
||||
// generate first Householder vector
|
||||
@ -112,11 +118,10 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
||||
}
|
||||
|
||||
if (v.tail(m - k).norm() != 0.0) {
|
||||
|
||||
if (k <= restart) {
|
||||
|
||||
// generate new Householder vector
|
||||
VectorType e(m - k - 1);
|
||||
VectorType e(m - k - 1);
|
||||
RealScalar beta;
|
||||
v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
|
||||
H.col(k).tail(m - k - 1) = e;
|
||||
@ -125,74 +130,73 @@ bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Precondition
|
||||
v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (k > 1) {
|
||||
for (int i = 0; i < k - 1; ++i) {
|
||||
// apply old Givens rotations to v
|
||||
v.applyOnTheLeft(i, i + 1, G[i].adjoint());
|
||||
}
|
||||
}
|
||||
if (k > 1) {
|
||||
for (int i = 0; i < k - 1; ++i) {
|
||||
// apply old Givens rotations to v
|
||||
v.applyOnTheLeft(i, i + 1, G[i].adjoint());
|
||||
}
|
||||
}
|
||||
|
||||
if (k<m && v(k) != (Scalar) 0) {
|
||||
// determine next Givens rotation
|
||||
G[k - 1].makeGivens(v(k - 1), v(k));
|
||||
if (k<m && v(k) != (Scalar) 0) {
|
||||
|
||||
// apply Givens rotation to v and w
|
||||
v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
||||
w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
||||
// determine next Givens rotation
|
||||
G[k - 1].makeGivens(v(k - 1), v(k));
|
||||
|
||||
}
|
||||
// apply Givens rotation to v and w
|
||||
v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
||||
w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
||||
}
|
||||
|
||||
// insert coefficients into upper matrix triangle
|
||||
H.col(k - 1).head(k) = v.head(k);
|
||||
// insert coefficients into upper matrix triangle
|
||||
H.col(k - 1).head(k) = v.head(k);
|
||||
|
||||
bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
|
||||
bool stop=(k==m || abs(w(k)) < tol * r0Norm || iters == maxIters);
|
||||
|
||||
if (stop || k == restart) {
|
||||
if (stop || k == restart) {
|
||||
|
||||
// solve upper triangular system
|
||||
VectorType y = w.head(k);
|
||||
H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
|
||||
// solve upper triangular system
|
||||
VectorType y = w.head(k);
|
||||
H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
|
||||
|
||||
// use Horner-like scheme to calculate solution vector
|
||||
VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
|
||||
// use Horner-like scheme to calculate solution vector
|
||||
VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
|
||||
|
||||
// apply Householder reflection H_{k} to x_new
|
||||
x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
|
||||
// apply Householder reflection H_{k} to x_new
|
||||
x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
|
||||
|
||||
for (int i = k - 2; i >= 0; --i) {
|
||||
x_new += y(i) * VectorType::Unit(m, i);
|
||||
// apply Householder reflection H_{i} to x_new
|
||||
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||
}
|
||||
for (int i = k - 2; i >= 0; --i) {
|
||||
x_new += y(i) * VectorType::Unit(m, i);
|
||||
// apply Householder reflection H_{i} to x_new
|
||||
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||
}
|
||||
|
||||
x += x_new;
|
||||
x += x_new;
|
||||
|
||||
if (stop) {
|
||||
return true;
|
||||
} else {
|
||||
k=0;
|
||||
if (stop) {
|
||||
return true;
|
||||
} else {
|
||||
k=0;
|
||||
|
||||
// reset data for a restart r0 = rhs - mat * x;
|
||||
VectorType p0=mat*x;
|
||||
VectorType p1=precond.solve(p0);
|
||||
r0 = rhs - p1;
|
||||
// r0_sqnorm = r0.squaredNorm();
|
||||
w = VectorType::Zero(restart + 1);
|
||||
H = FMatrixType::Zero(m, restart + 1);
|
||||
tau = VectorType::Zero(restart + 1);
|
||||
// reset data for restart
|
||||
const VectorType p0 = rhs - mat*x;
|
||||
r0 = precond.solve(p0);
|
||||
|
||||
// generate first Householder vector
|
||||
RealScalar beta;
|
||||
r0.makeHouseholder(e, tau.coeffRef(0), beta);
|
||||
w(0)=(Scalar) beta;
|
||||
H.bottomLeftCorner(m - 1, 1) = e;
|
||||
// clear Hessenberg matrix and Householder data
|
||||
H = FMatrixType::Zero(m, restart + 1);
|
||||
w = VectorType::Zero(restart + 1);
|
||||
tau = VectorType::Zero(restart + 1);
|
||||
|
||||
}
|
||||
// generate first Householder vector
|
||||
RealScalar beta;
|
||||
r0.makeHouseholder(e, tau.coeffRef(0), beta);
|
||||
w(0)=(Scalar) beta;
|
||||
H.bottomLeftCorner(m - 1, 1) = e;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
@ -145,10 +145,12 @@ class LevenbergMarquardt : internal::no_assignment_operator
|
||||
/** Sets the default parameters */
|
||||
void resetParameters()
|
||||
{
|
||||
using std::sqrt;
|
||||
|
||||
m_factor = 100.;
|
||||
m_maxfev = 400;
|
||||
m_ftol = std::sqrt(NumTraits<RealScalar>::epsilon());
|
||||
m_xtol = std::sqrt(NumTraits<RealScalar>::epsilon());
|
||||
m_ftol = sqrt(NumTraits<RealScalar>::epsilon());
|
||||
m_xtol = sqrt(NumTraits<RealScalar>::epsilon());
|
||||
m_gtol = 0. ;
|
||||
m_epsfcn = 0. ;
|
||||
}
|
||||
|
@ -45,6 +45,12 @@ namespace LevenbergMarquardtSpace {
|
||||
template<typename FunctorType, typename Scalar=double>
|
||||
class LevenbergMarquardt
|
||||
{
|
||||
static Scalar sqrt_epsilon()
|
||||
{
|
||||
using std::sqrt;
|
||||
return sqrt(NumTraits<Scalar>::epsilon());
|
||||
}
|
||||
|
||||
public:
|
||||
LevenbergMarquardt(FunctorType &_functor)
|
||||
: functor(_functor) { nfev = njev = iter = 0; fnorm = gnorm = 0.; useExternalScaling=false; }
|
||||
@ -55,8 +61,8 @@ public:
|
||||
Parameters()
|
||||
: factor(Scalar(100.))
|
||||
, maxfev(400)
|
||||
, ftol(std::sqrt(NumTraits<Scalar>::epsilon()))
|
||||
, xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
|
||||
, ftol(sqrt_epsilon())
|
||||
, xtol(sqrt_epsilon())
|
||||
, gtol(Scalar(0.))
|
||||
, epsfcn(Scalar(0.)) {}
|
||||
Scalar factor;
|
||||
@ -72,7 +78,7 @@ public:
|
||||
|
||||
LevenbergMarquardtSpace::Status lmder1(
|
||||
FVectorType &x,
|
||||
const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
|
||||
const Scalar tol = sqrt_epsilon()
|
||||
);
|
||||
|
||||
LevenbergMarquardtSpace::Status minimize(FVectorType &x);
|
||||
@ -83,12 +89,12 @@ public:
|
||||
FunctorType &functor,
|
||||
FVectorType &x,
|
||||
Index *nfev,
|
||||
const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
|
||||
const Scalar tol = sqrt_epsilon()
|
||||
);
|
||||
|
||||
LevenbergMarquardtSpace::Status lmstr1(
|
||||
FVectorType &x,
|
||||
const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
|
||||
const Scalar tol = sqrt_epsilon()
|
||||
);
|
||||
|
||||
LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType &x);
|
||||
@ -109,6 +115,7 @@ public:
|
||||
|
||||
Scalar lm_param(void) { return par; }
|
||||
private:
|
||||
|
||||
FunctorType &functor;
|
||||
Index n;
|
||||
Index m;
|
||||
|
@ -1,6 +0,0 @@
|
||||
FILE(GLOB Eigen_SVD_SRCS "*.h")
|
||||
|
||||
INSTALL(FILES
|
||||
${Eigen_SVD_SRCS}
|
||||
DESTINATION ${INCLUDE_INSTALL_DIR}unsupported/Eigen/src/SVD COMPONENT Devel
|
||||
)
|
@ -1,782 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_JACOBISVD_H
|
||||
#define EIGEN_JACOBISVD_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
// forward declaration (needed by ICC)
|
||||
// the empty body is required by MSVC
|
||||
template<typename MatrixType, int QRPreconditioner,
|
||||
bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
|
||||
struct svd_precondition_2x2_block_to_be_real {};
|
||||
|
||||
/*** QR preconditioners (R-SVD)
|
||||
***
|
||||
*** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
|
||||
*** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
|
||||
*** JacobiSVD which by itself is only able to work on square matrices.
|
||||
***/
|
||||
|
||||
enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case>
|
||||
struct qr_preconditioner_should_do_anything
|
||||
{
|
||||
enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
|
||||
MatrixType::ColsAtCompileTime != Dynamic &&
|
||||
MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
|
||||
b = MatrixType::RowsAtCompileTime != Dynamic &&
|
||||
MatrixType::ColsAtCompileTime != Dynamic &&
|
||||
MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
|
||||
ret = !( (QRPreconditioner == NoQRPreconditioner) ||
|
||||
(Case == PreconditionIfMoreColsThanRows && bool(a)) ||
|
||||
(Case == PreconditionIfMoreRowsThanCols && bool(b)) )
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case,
|
||||
bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
|
||||
> struct qr_preconditioner_impl {};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner, int Case>
|
||||
class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
|
||||
bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
/*** preconditioner using FullPivHouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
|
||||
};
|
||||
typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
private:
|
||||
typedef FullPivHouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
WorkspaceType m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
|
||||
TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
m_qr.compute(m_adjoint);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
private:
|
||||
typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** preconditioner using ColPivHouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
else if(svd.m_computeThinU)
|
||||
{
|
||||
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
|
||||
}
|
||||
if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef ColPivHouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
|
||||
TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
m_qr.compute(m_adjoint);
|
||||
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
else if(svd.m_computeThinV)
|
||||
{
|
||||
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
|
||||
}
|
||||
if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** preconditioner using HouseholderQR ***/
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.rows(), svd.cols());
|
||||
}
|
||||
if (svd.m_computeFullU) m_workspace.resize(svd.rows());
|
||||
else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.rows() > matrix.cols())
|
||||
{
|
||||
m_qr.compute(matrix);
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
|
||||
if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
|
||||
else if(svd.m_computeThinU)
|
||||
{
|
||||
svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
|
||||
}
|
||||
if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
private:
|
||||
typedef HouseholderQR<MatrixType> QRType;
|
||||
QRType m_qr;
|
||||
typename internal::plain_col_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum
|
||||
{
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Options = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
|
||||
TransposeTypeWithSameStorageOrder;
|
||||
|
||||
void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
|
||||
{
|
||||
if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
|
||||
{
|
||||
m_qr.~QRType();
|
||||
::new (&m_qr) QRType(svd.cols(), svd.rows());
|
||||
}
|
||||
if (svd.m_computeFullV) m_workspace.resize(svd.cols());
|
||||
else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
|
||||
m_adjoint.resize(svd.cols(), svd.rows());
|
||||
}
|
||||
|
||||
bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
|
||||
{
|
||||
if(matrix.cols() > matrix.rows())
|
||||
{
|
||||
m_adjoint = matrix.adjoint();
|
||||
m_qr.compute(m_adjoint);
|
||||
|
||||
svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
|
||||
if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
|
||||
else if(svd.m_computeThinV)
|
||||
{
|
||||
svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
|
||||
m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
|
||||
}
|
||||
if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
|
||||
return true;
|
||||
}
|
||||
else return false;
|
||||
}
|
||||
|
||||
private:
|
||||
typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
|
||||
QRType m_qr;
|
||||
TransposeTypeWithSameStorageOrder m_adjoint;
|
||||
typename internal::plain_row_type<MatrixType>::type m_workspace;
|
||||
};
|
||||
|
||||
/*** 2x2 SVD implementation
|
||||
***
|
||||
*** JacobiSVD consists in performing a series of 2x2 SVD subproblems
|
||||
***/
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
typedef typename SVD::Index Index;
|
||||
static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
||||
{
|
||||
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename SVD::Index Index;
|
||||
static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
|
||||
{
|
||||
using std::sqrt;
|
||||
Scalar z;
|
||||
JacobiRotation<Scalar> rot;
|
||||
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
|
||||
if(n==0)
|
||||
{
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.row(p) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
else
|
||||
{
|
||||
rot.c() = conj(work_matrix.coeff(p,p)) / n;
|
||||
rot.s() = work_matrix.coeff(q,p) / n;
|
||||
work_matrix.applyOnTheLeft(p,q,rot);
|
||||
if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
|
||||
if(work_matrix.coeff(p,q) != Scalar(0))
|
||||
{
|
||||
Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.col(q) *= z;
|
||||
if(svd.computeV()) svd.m_matrixV.col(q) *= z;
|
||||
}
|
||||
if(work_matrix.coeff(q,q) != Scalar(0))
|
||||
{
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType, typename RealScalar, typename Index>
|
||||
void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
||||
JacobiRotation<RealScalar> *j_left,
|
||||
JacobiRotation<RealScalar> *j_right)
|
||||
{
|
||||
using std::sqrt;
|
||||
Matrix<RealScalar,2,2> m;
|
||||
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
|
||||
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
|
||||
JacobiRotation<RealScalar> rot1;
|
||||
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
|
||||
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
|
||||
if(t == RealScalar(0))
|
||||
{
|
||||
rot1.c() = RealScalar(0);
|
||||
rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
|
||||
}
|
||||
else
|
||||
{
|
||||
RealScalar u = d / t;
|
||||
rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
|
||||
rot1.s() = rot1.c() * u;
|
||||
}
|
||||
m.applyOnTheLeft(0,1,rot1);
|
||||
j_right->makeJacobi(m,0,1);
|
||||
*j_left = rot1 * j_right->transpose();
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup SVD_Module
|
||||
*
|
||||
*
|
||||
* \class JacobiSVD
|
||||
*
|
||||
* \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
|
||||
* \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
|
||||
* for the R-SVD step for non-square matrices. See discussion of possible values below.
|
||||
*
|
||||
* SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
|
||||
* \f[ A = U S V^* \f]
|
||||
* where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
|
||||
* the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
|
||||
* and right \em singular \em vectors of \a A respectively.
|
||||
*
|
||||
* Singular values are always sorted in decreasing order.
|
||||
*
|
||||
* This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
|
||||
*
|
||||
* You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
|
||||
* smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
|
||||
* singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
|
||||
* and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
|
||||
*
|
||||
* Here's an example demonstrating basic usage:
|
||||
* \include JacobiSVD_basic.cpp
|
||||
* Output: \verbinclude JacobiSVD_basic.out
|
||||
*
|
||||
* This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
|
||||
* bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
|
||||
* \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
|
||||
* In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
|
||||
*
|
||||
* If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
|
||||
* terminate in finite (and reasonable) time.
|
||||
*
|
||||
* The possible values for QRPreconditioner are:
|
||||
* \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
|
||||
* \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
|
||||
* Contrary to other QRs, it doesn't allow computing thin unitaries.
|
||||
* \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
|
||||
* This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
|
||||
* is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
|
||||
* process is more reliable than the optimized bidiagonal SVD iterations.
|
||||
* \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
|
||||
* JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
|
||||
* faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
|
||||
* if QR preconditioning is needed before applying it anyway.
|
||||
*
|
||||
* \sa MatrixBase::jacobiSvd()
|
||||
*/
|
||||
template<typename _MatrixType, int QRPreconditioner>
|
||||
class JacobiSVD : public SVDBase<_MatrixType>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
enum {
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
|
||||
MatrixOptions = MatrixType::Options
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
|
||||
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
|
||||
MatrixUType;
|
||||
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
|
||||
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
|
||||
MatrixVType;
|
||||
typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowType;
|
||||
typedef typename internal::plain_col_type<MatrixType>::type ColType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
|
||||
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
|
||||
WorkMatrixType;
|
||||
|
||||
/** \brief Default Constructor.
|
||||
*
|
||||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via JacobiSVD::compute(const MatrixType&).
|
||||
*/
|
||||
JacobiSVD()
|
||||
: SVDBase<_MatrixType>::SVDBase()
|
||||
{}
|
||||
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
* Like the default constructor but with preallocation of the internal data
|
||||
* according to the specified problem size.
|
||||
* \sa JacobiSVD()
|
||||
*/
|
||||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
: SVDBase<_MatrixType>::SVDBase()
|
||||
{
|
||||
allocate(rows, cols, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Constructor performing the decomposition of given matrix.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
: SVDBase<_MatrixType>::SVDBase()
|
||||
{
|
||||
compute(matrix, computationOptions);
|
||||
}
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using custom options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
* \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
|
||||
* By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
|
||||
* #ComputeFullV, #ComputeThinV.
|
||||
*
|
||||
* Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
|
||||
* available with the (non-default) FullPivHouseholderQR preconditioner.
|
||||
*/
|
||||
SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
|
||||
|
||||
/** \brief Method performing the decomposition of given matrix using current options.
|
||||
*
|
||||
* \param matrix the matrix to decompose
|
||||
*
|
||||
* This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
|
||||
*/
|
||||
SVDBase<MatrixType>& compute(const MatrixType& matrix)
|
||||
{
|
||||
return compute(matrix, this->m_computationOptions);
|
||||
}
|
||||
|
||||
/** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
|
||||
*
|
||||
* \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
|
||||
* In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const internal::solve_retval<JacobiSVD, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized.");
|
||||
eigen_assert(SVDBase<MatrixType>::computeU() && SVDBase<MatrixType>::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
|
||||
return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
|
||||
|
||||
private:
|
||||
void allocate(Index rows, Index cols, unsigned int computationOptions);
|
||||
|
||||
protected:
|
||||
WorkMatrixType m_workMatrix;
|
||||
|
||||
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
|
||||
friend struct internal::qr_preconditioner_impl;
|
||||
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
|
||||
internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
|
||||
};
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
|
||||
{
|
||||
if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
|
||||
|
||||
if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
|
||||
{
|
||||
eigen_assert(!(this->m_computeThinU || this->m_computeThinV) &&
|
||||
"JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
|
||||
"Use the ColPivHouseholderQR preconditioner instead.");
|
||||
}
|
||||
|
||||
m_workMatrix.resize(this->m_diagSize, this->m_diagSize);
|
||||
|
||||
if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this);
|
||||
if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this);
|
||||
}
|
||||
|
||||
template<typename MatrixType, int QRPreconditioner>
|
||||
SVDBase<MatrixType>&
|
||||
JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
|
||||
{
|
||||
using std::abs;
|
||||
allocate(matrix.rows(), matrix.cols(), computationOptions);
|
||||
|
||||
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
|
||||
// only worsening the precision of U and V as we accumulate more rotations
|
||||
const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
|
||||
|
||||
// limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
|
||||
const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
|
||||
|
||||
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
|
||||
|
||||
if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
|
||||
{
|
||||
m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize);
|
||||
if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows);
|
||||
if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize);
|
||||
if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols);
|
||||
if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize);
|
||||
}
|
||||
|
||||
/*** step 2. The main Jacobi SVD iteration. ***/
|
||||
|
||||
bool finished = false;
|
||||
while(!finished)
|
||||
{
|
||||
finished = true;
|
||||
|
||||
// do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
|
||||
|
||||
for(Index p = 1; p < this->m_diagSize; ++p)
|
||||
{
|
||||
for(Index q = 0; q < p; ++q)
|
||||
{
|
||||
// if this 2x2 sub-matrix is not diagonal already...
|
||||
// notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
|
||||
// keep us iterating forever. Similarly, small denormal numbers are considered zero.
|
||||
using std::max;
|
||||
RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
|
||||
abs(m_workMatrix.coeff(q,q))));
|
||||
if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold)
|
||||
{
|
||||
finished = false;
|
||||
|
||||
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
|
||||
internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
|
||||
JacobiRotation<RealScalar> j_left, j_right;
|
||||
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
|
||||
|
||||
// accumulate resulting Jacobi rotations
|
||||
m_workMatrix.applyOnTheLeft(p,q,j_left);
|
||||
if(SVDBase<MatrixType>::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose());
|
||||
|
||||
m_workMatrix.applyOnTheRight(p,q,j_right);
|
||||
if(SVDBase<MatrixType>::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
|
||||
|
||||
for(Index i = 0; i < this->m_diagSize; ++i)
|
||||
{
|
||||
RealScalar a = abs(m_workMatrix.coeff(i,i));
|
||||
this->m_singularValues.coeffRef(i) = a;
|
||||
if(SVDBase<MatrixType>::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a;
|
||||
}
|
||||
|
||||
/*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
|
||||
|
||||
this->m_nonzeroSingularValues = this->m_diagSize;
|
||||
for(Index i = 0; i < this->m_diagSize; i++)
|
||||
{
|
||||
Index pos;
|
||||
RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos);
|
||||
if(maxRemainingSingularValue == RealScalar(0))
|
||||
{
|
||||
this->m_nonzeroSingularValues = i;
|
||||
break;
|
||||
}
|
||||
if(pos)
|
||||
{
|
||||
pos += i;
|
||||
std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos));
|
||||
if(SVDBase<MatrixType>::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i));
|
||||
if(SVDBase<MatrixType>::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i));
|
||||
}
|
||||
}
|
||||
|
||||
this->m_isInitialized = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
template<typename _MatrixType, int QRPreconditioner, typename Rhs>
|
||||
struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||
: solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
||||
{
|
||||
typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
eigen_assert(rhs().rows() == dec().rows());
|
||||
|
||||
// A = U S V^*
|
||||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Index diagSize = (std::min)(dec().rows(), dec().cols());
|
||||
typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
|
||||
|
||||
Index nonzeroSingVals = dec().nonzeroSingularValues();
|
||||
invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
|
||||
invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
|
||||
|
||||
dst = dec().matrixV().leftCols(diagSize)
|
||||
* invertedSingVals.asDiagonal()
|
||||
* dec().matrixU().leftCols(diagSize).adjoint()
|
||||
* rhs();
|
||||
}
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
/** \svd_module
|
||||
*
|
||||
* \return the singular value decomposition of \c *this computed by two-sided
|
||||
* Jacobi transformations.
|
||||
*
|
||||
* \sa class JacobiSVD
|
||||
*/
|
||||
template<typename Derived>
|
||||
JacobiSVD<typename MatrixBase<Derived>::PlainObject>
|
||||
MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
|
||||
{
|
||||
return JacobiSVD<PlainObject>(*this, computationOptions);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_JACOBISVD_H
|
@ -10,12 +10,10 @@ FOREACH(example_src ${examples_SRCS})
|
||||
if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO)
|
||||
target_link_libraries(example_${example} ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO})
|
||||
endif()
|
||||
GET_TARGET_PROPERTY(example_executable
|
||||
example_${example} LOCATION)
|
||||
ADD_CUSTOM_COMMAND(
|
||||
TARGET example_${example}
|
||||
POST_BUILD
|
||||
COMMAND ${example_executable}
|
||||
COMMAND example_${example}
|
||||
ARGS >${CMAKE_CURRENT_BINARY_DIR}/${example}.out
|
||||
)
|
||||
ADD_DEPENDENCIES(unsupported_examples example_${example})
|
||||
|
@ -14,12 +14,10 @@ FOREACH(snippet_src ${snippets_SRCS})
|
||||
if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO)
|
||||
target_link_libraries(${compile_snippet_target} ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO})
|
||||
endif()
|
||||
GET_TARGET_PROPERTY(compile_snippet_executable
|
||||
${compile_snippet_target} LOCATION)
|
||||
ADD_CUSTOM_COMMAND(
|
||||
TARGET ${compile_snippet_target}
|
||||
POST_BUILD
|
||||
COMMAND ${compile_snippet_executable}
|
||||
COMMAND ${compile_snippet_target}
|
||||
ARGS >${CMAKE_CURRENT_BINARY_DIR}/${snippet}.out
|
||||
)
|
||||
ADD_DEPENDENCIES(unsupported_snippets ${compile_snippet_target})
|
||||
|
@ -1022,7 +1022,8 @@ void testNistLanczos1(void)
|
||||
VERIFY_IS_EQUAL(lm.nfev, 79);
|
||||
VERIFY_IS_EQUAL(lm.njev, 72);
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.430899764097e-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats
|
||||
std::cout.precision(30);
|
||||
VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.4290986055242372e-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats
|
||||
// check x
|
||||
VERIFY_IS_APPROX(x[0], 9.5100000027E-02);
|
||||
VERIFY_IS_APPROX(x[1], 1.0000000001E+00);
|
||||
@ -1043,7 +1044,7 @@ void testNistLanczos1(void)
|
||||
VERIFY_IS_EQUAL(lm.nfev, 9);
|
||||
VERIFY_IS_EQUAL(lm.njev, 8);
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.428595533845e-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats
|
||||
VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.430571737783119393e-25); // should be 1.4307867721E-25, but nist results are on 128-bit floats
|
||||
// check x
|
||||
VERIFY_IS_APPROX(x[0], 9.5100000027E-02);
|
||||
VERIFY_IS_APPROX(x[1], 1.0000000001E+00);
|
||||
@ -1262,8 +1263,8 @@ void testNistBoxBOD(void)
|
||||
|
||||
// check return value
|
||||
VERIFY_IS_EQUAL(info, 1);
|
||||
VERIFY_IS_EQUAL(lm.nfev, 31);
|
||||
VERIFY_IS_EQUAL(lm.njev, 25);
|
||||
VERIFY(lm.nfev < 31); // 31
|
||||
VERIFY(lm.njev < 25); // 25
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 1.1680088766E+03);
|
||||
// check x
|
||||
@ -1342,10 +1343,6 @@ void testNistMGH17(void)
|
||||
lm.parameters.maxfev = 1000;
|
||||
info = lm.minimize(x);
|
||||
|
||||
// check return value
|
||||
VERIFY_IS_EQUAL(info, 2);
|
||||
VERIFY_IS_EQUAL(lm.nfev, 602 );
|
||||
VERIFY_IS_EQUAL(lm.njev, 545 );
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(lm.fvec.squaredNorm(), 5.4648946975E-05);
|
||||
// check x
|
||||
@ -1355,6 +1352,11 @@ void testNistMGH17(void)
|
||||
VERIFY_IS_APPROX(x[3], 1.2867534640E-02);
|
||||
VERIFY_IS_APPROX(x[4], 2.2122699662E-02);
|
||||
|
||||
// check return value
|
||||
VERIFY_IS_EQUAL(info, 2);
|
||||
VERIFY(lm.nfev < 650); // 602
|
||||
VERIFY(lm.njev < 600); // 545
|
||||
|
||||
/*
|
||||
* Second try
|
||||
*/
|
||||
@ -1832,8 +1834,8 @@ void test_NonLinearOptimization()
|
||||
// NIST tests, level of difficulty = "Average"
|
||||
CALL_SUBTEST/*_5*/(testNistHahn1());
|
||||
CALL_SUBTEST/*_6*/(testNistMisra1d());
|
||||
// CALL_SUBTEST/*_7*/(testNistMGH17());
|
||||
// CALL_SUBTEST/*_8*/(testNistLanczos1());
|
||||
CALL_SUBTEST/*_7*/(testNistMGH17());
|
||||
CALL_SUBTEST/*_8*/(testNistLanczos1());
|
||||
|
||||
// // NIST tests, level of difficulty = "Higher"
|
||||
CALL_SUBTEST/*_9*/(testNistRat42());
|
||||
|
@ -787,10 +787,6 @@ void testNistMGH10(void)
|
||||
LevenbergMarquardt<MGH10_functor> lm(functor);
|
||||
info = lm.minimize(x);
|
||||
|
||||
// check return value
|
||||
VERIFY_IS_EQUAL(info, 1);
|
||||
VERIFY_IS_EQUAL(lm.nfev(), 284 );
|
||||
VERIFY_IS_EQUAL(lm.njev(), 249 );
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(lm.fvec().squaredNorm(), 8.7945855171E+01);
|
||||
// check x
|
||||
@ -798,6 +794,11 @@ void testNistMGH10(void)
|
||||
VERIFY_IS_APPROX(x[1], 6.1813463463E+03);
|
||||
VERIFY_IS_APPROX(x[2], 3.4522363462E+02);
|
||||
|
||||
// check return value
|
||||
//VERIFY_IS_EQUAL(info, 1);
|
||||
VERIFY_IS_EQUAL(lm.nfev(), 284 );
|
||||
VERIFY_IS_EQUAL(lm.njev(), 249 );
|
||||
|
||||
/*
|
||||
* Second try
|
||||
*/
|
||||
@ -805,16 +806,17 @@ void testNistMGH10(void)
|
||||
// do the computation
|
||||
info = lm.minimize(x);
|
||||
|
||||
// check return value
|
||||
VERIFY_IS_EQUAL(info, 1);
|
||||
VERIFY_IS_EQUAL(lm.nfev(), 126);
|
||||
VERIFY_IS_EQUAL(lm.njev(), 116);
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(lm.fvec().squaredNorm(), 8.7945855171E+01);
|
||||
// check x
|
||||
VERIFY_IS_APPROX(x[0], 5.6096364710E-03);
|
||||
VERIFY_IS_APPROX(x[1], 6.1813463463E+03);
|
||||
VERIFY_IS_APPROX(x[2], 3.4522363462E+02);
|
||||
|
||||
// check return value
|
||||
//VERIFY_IS_EQUAL(info, 1);
|
||||
VERIFY_IS_EQUAL(lm.nfev(), 126);
|
||||
VERIFY_IS_EQUAL(lm.njev(), 116);
|
||||
}
|
||||
|
||||
|
||||
@ -866,16 +868,17 @@ void testNistBoxBOD(void)
|
||||
lm.setFactor(10);
|
||||
info = lm.minimize(x);
|
||||
|
||||
// check return value
|
||||
VERIFY_IS_EQUAL(info, 1);
|
||||
VERIFY_IS_EQUAL(lm.nfev(), 31);
|
||||
VERIFY_IS_EQUAL(lm.njev(), 25);
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(lm.fvec().squaredNorm(), 1.1680088766E+03);
|
||||
// check x
|
||||
VERIFY_IS_APPROX(x[0], 2.1380940889E+02);
|
||||
VERIFY_IS_APPROX(x[1], 5.4723748542E-01);
|
||||
|
||||
// check return value
|
||||
VERIFY_IS_EQUAL(info, 1);
|
||||
VERIFY(lm.nfev() < 31); // 31
|
||||
VERIFY(lm.njev() < 25); // 25
|
||||
|
||||
/*
|
||||
* Second try
|
||||
*/
|
||||
@ -948,10 +951,6 @@ void testNistMGH17(void)
|
||||
lm.setMaxfev(1000);
|
||||
info = lm.minimize(x);
|
||||
|
||||
// check return value
|
||||
// VERIFY_IS_EQUAL(info, 2); //FIXME Use (lm.info() == Success)
|
||||
// VERIFY_IS_EQUAL(lm.nfev(), 602 );
|
||||
VERIFY_IS_EQUAL(lm.njev(), 545 );
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(lm.fvec().squaredNorm(), 5.4648946975E-05);
|
||||
// check x
|
||||
@ -961,6 +960,11 @@ void testNistMGH17(void)
|
||||
VERIFY_IS_APPROX(x[3], 1.2867534640E-02);
|
||||
VERIFY_IS_APPROX(x[4], 2.2122699662E-02);
|
||||
|
||||
// check return value
|
||||
// VERIFY_IS_EQUAL(info, 2); //FIXME Use (lm.info() == Success)
|
||||
VERIFY(lm.nfev() < 700 ); // 602
|
||||
VERIFY(lm.njev() < 600 ); // 545
|
||||
|
||||
/*
|
||||
* Second try
|
||||
*/
|
||||
@ -1035,10 +1039,6 @@ void testNistMGH09(void)
|
||||
lm.setMaxfev(1000);
|
||||
info = lm.minimize(x);
|
||||
|
||||
// check return value
|
||||
VERIFY_IS_EQUAL(info, 1);
|
||||
VERIFY_IS_EQUAL(lm.nfev(), 490 );
|
||||
VERIFY_IS_EQUAL(lm.njev(), 376 );
|
||||
// check norm^2
|
||||
VERIFY_IS_APPROX(lm.fvec().squaredNorm(), 3.0750560385E-04);
|
||||
// check x
|
||||
@ -1046,6 +1046,10 @@ void testNistMGH09(void)
|
||||
VERIFY_IS_APPROX(x[1], 0.19126423573); // should be 1.9128232873E-01
|
||||
VERIFY_IS_APPROX(x[2], 0.12305309914); // should be 1.2305650693E-01
|
||||
VERIFY_IS_APPROX(x[3], 0.13605395375); // should be 1.3606233068E-01
|
||||
// check return value
|
||||
VERIFY_IS_EQUAL(info, 1);
|
||||
VERIFY(lm.nfev() < 510 ); // 490
|
||||
VERIFY(lm.njev() < 400 ); // 376
|
||||
|
||||
/*
|
||||
* Second try
|
||||
|
@ -18,7 +18,7 @@
|
||||
#define EIGEN_RUNTIME_NO_MALLOC
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/SVD>
|
||||
#include <unsupported/Eigen/BDCSVD>
|
||||
#include <Eigen/LU>
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user