Added asserts to AngleAxis class which verify that the initial axis is

normalized.
This commit is contained in:
Hauke Heibel 2013-05-15 12:05:01 +02:00
parent 8556ca3de5
commit 12e69ec896

View File

@ -67,12 +67,21 @@ public:
/** Default constructor without initialization. */ /** Default constructor without initialization. */
AngleAxis() {} AngleAxis() {}
/** Constructs and initialize the angle-axis rotation from an \a angle in radian /** Constructs and initialize the angle-axis rotation from an \a angle in radian
* and an \a axis which must be normalized. */ * and an \a axis which must be normalized. */
template<typename Derived> template<typename Derived>
inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle)
{
using std::sqrt;
using std::abs;
// since we compare against 1, this is equal to computing the relative error
eigen_assert( abs(m_axis.derived().squaredNorm() - 1) < sqrt( dummy_precision<Scalar>() ) );
}
/** Constructs and initialize the angle-axis rotation from a quaternion \a q. */ /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
inline AngleAxis(const QuaternionType& q) { *this = q; } inline AngleAxis(const QuaternionType& q) { *this = q; }
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
template<typename Derived> template<typename Derived>
inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
@ -167,6 +176,11 @@ AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
{ {
m_angle = 2*std::acos(q.w()); m_angle = 2*std::acos(q.w());
m_axis = q.vec() / ei_sqrt(n2); m_axis = q.vec() / ei_sqrt(n2);
using std::sqrt;
using std::abs;
// since we compare against 1, this is equal to computing the relative error
eigen_assert( abs(m_axis.derived().squaredNorm() - 1) < sqrt( dummy_precision<Scalar>() ) );
} }
return *this; return *this;
} }