mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
fix stupid numerical stability issue in SVD::solve (though it is not yet as stable as LU with full pivoting)
This commit is contained in:
parent
6add33e2c2
commit
12e9de4abb
@ -573,7 +573,7 @@ template<typename Derived> class MatrixBase
|
||||
|
||||
/////////// SVD module ///////////
|
||||
|
||||
const SVD<EvalType> svd() const;
|
||||
SVD<EvalType> svd() const;
|
||||
|
||||
/////////// Geometry module ///////////
|
||||
|
||||
|
@ -76,6 +76,7 @@ template<typename MatrixType> class SVD
|
||||
const MatrixVType& matrixV() const { return m_matV; }
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
SVD& sort();
|
||||
|
||||
protected:
|
||||
/** \internal */
|
||||
@ -464,6 +465,43 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
|
||||
} // end iterations
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
SVD<MatrixType>& SVD<MatrixType>::sort()
|
||||
{
|
||||
int mu = m_matU.rows();
|
||||
int mv = m_matV.rows();
|
||||
int n = m_matU.cols();
|
||||
|
||||
for (int i=0; i<n; i++)
|
||||
{
|
||||
int k = i;
|
||||
Scalar p = m_sigma.coeff(i);
|
||||
|
||||
for (int j=i+1; j<n; j++)
|
||||
{
|
||||
if (m_sigma.coeff(j) > p)
|
||||
{
|
||||
k = j;
|
||||
p = m_sigma.coeff(j);
|
||||
}
|
||||
}
|
||||
if (k != i)
|
||||
{
|
||||
m_sigma.coeffRef(k) = m_sigma.coeff(i); // i.e.
|
||||
m_sigma.coeffRef(i) = p; // swaps the i-th and the k-th elements
|
||||
|
||||
int j = mu;
|
||||
for(int s=0; j!=0; ++s, --j)
|
||||
std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
|
||||
|
||||
j = mv;
|
||||
for (int s=0; j!=0; ++s, --j)
|
||||
std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A.
|
||||
* The parts of the solution corresponding to zero singular values are ignored.
|
||||
*
|
||||
@ -476,6 +514,7 @@ void SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* resul
|
||||
const int rows = m_matU.rows();
|
||||
ei_assert(b.rows() == rows);
|
||||
|
||||
Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
|
||||
for (int j=0; j<b.cols(); ++j)
|
||||
{
|
||||
Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
|
||||
@ -483,10 +522,10 @@ void SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* resul
|
||||
for (int i = 0; i <m_matU.cols(); i++)
|
||||
{
|
||||
Scalar si = m_sigma.coeff(i);
|
||||
if (si != 0)
|
||||
aux.coeffRef(i) /= si;
|
||||
else
|
||||
if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
|
||||
aux.coeffRef(i) = 0;
|
||||
else
|
||||
aux.coeffRef(i) /= si;
|
||||
}
|
||||
|
||||
result->col(j) = m_matV * aux;
|
||||
@ -497,7 +536,7 @@ void SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* resul
|
||||
* \returns the SVD decomposition of \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline const SVD<typename MatrixBase<Derived>::EvalType>
|
||||
inline SVD<typename MatrixBase<Derived>::EvalType>
|
||||
MatrixBase<Derived>::svd() const
|
||||
{
|
||||
return SVD<typename ei_eval<Derived>::type>(derived());
|
||||
|
Loading…
x
Reference in New Issue
Block a user