bug #1062: backport fix of SelfAdjointEigenSolver for RowMajor matrices from default branch

This commit is contained in:
Gael Guennebaud 2015-09-04 18:26:26 +02:00
parent 769cb99845
commit 13135a82bd

View File

@ -80,6 +80,8 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
/** \brief Scalar type for matrices of type \p _MatrixType. */
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
/** \brief Real scalar type for \p _MatrixType.
*
@ -225,7 +227,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
*
* \sa eigenvalues()
*/
const MatrixType& eigenvectors() const
const EigenvectorsType& eigenvectors() const
{
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
@ -356,7 +358,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
MatrixType m_eivec;
EigenvectorsType m_eivec;
RealVectorType m_eivalues;
typename TridiagonalizationType::SubDiagonalType m_subdiag;
ComputationInfo m_info;
@ -381,7 +383,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
* "implicit symmetric QR step with Wilkinson shift"
*/
namespace internal {
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
template<typename RealScalar, typename Scalar, typename Index>
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
}
@ -413,7 +415,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
// declare some aliases
RealVectorType& diag = m_eivalues;
MatrixType& mat = m_eivec;
EigenvectorsType& mat = m_eivec;
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
mat = matrix.template triangularView<Lower>();
@ -449,7 +451,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
while (start>0 && m_subdiag[start-1]!=0)
start--;
internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
internal::tridiagonal_qr_step(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
}
if (iter <= m_maxIterations * n)
@ -498,6 +500,7 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
typedef typename SolverType::RealVectorType VectorType;
typedef typename SolverType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename SolverType::EigenvectorsType EigenvectorsType;
/** \internal
* Computes the roots of the characteristic polynomial of \a m.
@ -570,7 +573,7 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
&& "invalid option parameter");
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
MatrixType& eivecs = solver.m_eivec;
EigenvectorsType& eivecs = solver.m_eivec;
VectorType& eivals = solver.m_eivalues;
// Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
@ -652,6 +655,7 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2
typedef typename SolverType::MatrixType MatrixType;
typedef typename SolverType::RealVectorType VectorType;
typedef typename SolverType::Scalar Scalar;
typedef typename SolverType::EigenvectorsType EigenvectorsType;
static inline void computeRoots(const MatrixType& m, VectorType& roots)
{
@ -673,7 +677,7 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,2
&& "invalid option parameter");
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
MatrixType& eivecs = solver.m_eivec;
EigenvectorsType& eivecs = solver.m_eivec;
VectorType& eivals = solver.m_eivalues;
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
@ -732,7 +736,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
}
namespace internal {
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
template<typename RealScalar, typename Scalar, typename Index>
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
{
using std::abs;
@ -784,8 +788,7 @@ static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index sta
// apply the givens rotation to the unit matrix Q = Q * G
if (matrixQ)
{
// FIXME if StorageOrder == RowMajor this operation is not very efficient
Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor> > q(matrixQ,n,n);
q.applyOnTheRight(k,k+1,rot);
}
}