Refactor special values test for pow, and add a similar test for atan2

This commit is contained in:
Rasmus Munk Larsen 2022-10-12 20:12:08 +00:00
parent 462758e8a3
commit 14c847dc0e
2 changed files with 76 additions and 60 deletions

View File

@ -523,7 +523,7 @@ struct scalar_atan2_op {
// See https://en.cppreference.com/w/cpp/numeric/math/atan2
// for how corner cases are supposed to be handled according to the
// IEEE floating-point standard (IEC 60559).
const Packet kSignMask = pnegate(pzero(x));
const Packet kSignMask = pset1<Packet>(-Scalar(0.0));
const Packet kPi = pset1<Packet>(Scalar(EIGEN_PI));
const Packet kPiO2 = pset1<Packet>(Scalar(EIGEN_PI / 2));
const Packet kPiO4 = pset1<Packet>(Scalar(EIGEN_PI / 4));

View File

@ -7,12 +7,11 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <vector>
#include "main.h"
// Test the corner cases of pow(x, y) for real types.
template<typename Scalar>
void pow_test() {
template <typename Scalar>
std::vector<Scalar> special_values() {
const Scalar zero = Scalar(0);
const Scalar eps = Eigen::NumTraits<Scalar>::epsilon();
const Scalar one = Scalar(1);
@ -27,25 +26,19 @@ void pow_test() {
const Scalar max = (std::numeric_limits<Scalar>::max)();
const Scalar max_exp = (static_cast<Scalar>(int(Eigen::NumTraits<Scalar>::max_exponent())) * Scalar(EIGEN_LN2)) / eps;
const static Scalar abs_vals[] = {zero,
denorm_min,
min,
eps,
sqrt_half,
one,
sqrt2,
two,
three,
max_exp,
max,
inf,
nan};
const int abs_cases = 13;
return {zero, denorm_min, min, eps, sqrt_half, one, sqrt2, two, three, max_exp, max, inf, nan};
}
template<typename Scalar>
void special_value_pairs(Array<Scalar, Dynamic, Dynamic>& x,
Array<Scalar, Dynamic, Dynamic>& y) {
std::vector<Scalar> abs_vals = special_values<Scalar>();
const int abs_cases = abs_vals.size();
const int num_cases = 2*abs_cases * 2*abs_cases;
// Repeat the same value to make sure we hit the vectorized path.
const int num_repeats = 32;
Array<Scalar, Dynamic, Dynamic> x(num_repeats, num_cases);
Array<Scalar, Dynamic, Dynamic> y(num_repeats, num_cases);
// ensure both vectorized and non-vectorized paths taken
const int num_repeats = 2 * internal::packet_traits<Scalar>::size + 1;
x.resize(num_repeats, num_cases);
y.resize(num_repeats, num_cases);
int count = 0;
for (int i = 0; i < abs_cases; ++i) {
const Scalar abs_x = abs_vals[i];
@ -64,65 +57,85 @@ void pow_test() {
}
}
}
}
Array<Scalar, Dynamic, Dynamic> actual = x.pow(y);
template <typename Scalar, typename Fn, typename RefFn>
void binary_op_test(std::string name, Fn fun, RefFn ref) {
const Scalar tol = test_precision<Scalar>();
Array<Scalar, Dynamic, Dynamic> x;
Array<Scalar, Dynamic, Dynamic> y;
special_value_pairs(x, y);
Array<Scalar, Dynamic, Dynamic> actual = fun(x, y);
bool all_pass = true;
for (int i = 0; i < 1; ++i) {
for (int j = 0; j < num_cases; ++j) {
Scalar e = static_cast<Scalar>(std::pow(x(i,j), y(i,j)));
for (int i = 0; i < x.rows(); ++i) {
for (int j = 0; j < x.cols(); ++j) {
Scalar e = static_cast<Scalar>(ref(x(i,j), y(i,j)));
Scalar a = actual(i, j);
bool success = (a==e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || ((numext::isnan)(a) && (numext::isnan)(e));
all_pass &= success;
if (!success) {
std::cout << "pow(" << x(i,j) << "," << y(i,j) << ") = " << a << " != " << e << std::endl;
std::cout << name << "(" << x(i,j) << "," << y(i,j) << ") = " << a << " != " << e << std::endl;
}
}
}
VERIFY(all_pass);
}
typedef typename internal::make_integer<Scalar>::type Int_t;
template <typename Scalar>
void binary_ops_test() {
binary_op_test<Scalar>("pow",
[](auto x, auto y) { return Eigen::pow(x, y); },
[](auto x, auto y) { return std::pow(x, y); });
binary_op_test<Scalar>("atan2",
[](auto x, auto y) { return Eigen::atan2(x, y); },
[](auto x, auto y) { return std::atan2(x, y); });
}
// ensure both vectorized and non-vectorized paths taken
Index test_size = 2 * internal::packet_traits<Scalar>::size + 1;
Array<Scalar, Dynamic, 1> eigenPow(test_size);
for (int i = 0; i < num_cases; ++i) {
Array<Scalar, Dynamic, 1> bases = x.col(i);
for (Scalar abs_exponent : abs_vals){
for (Scalar exponent : {-abs_exponent, abs_exponent}){
// test floating point exponent code path
eigenPow.setZero();
eigenPow = bases.pow(exponent);
for (int j = 0; j < num_repeats; j++){
template <typename Scalar>
void pow_scalar_exponent_test() {
using Int_t = typename internal::make_integer<Scalar>::type;
const Scalar tol = test_precision<Scalar>();
std::vector<Scalar> abs_vals = special_values<Scalar>();
const int num_vals = abs_vals.size();
Map<Array<Scalar, Dynamic, 1>> bases(abs_vals.data(), num_vals);
bool all_pass = true;
for (Scalar abs_exponent : abs_vals) {
for (Scalar exponent : {-abs_exponent, abs_exponent}) {
// test integer exponent code path
bool exponent_is_integer = (numext::isfinite)(exponent) && (numext::round(exponent) == exponent) &&
(numext::abs(exponent) < static_cast<Scalar>(NumTraits<Int_t>::highest()));
if (exponent_is_integer) {
Int_t exponent_as_int = static_cast<Int_t>(exponent);
Array<Scalar, Dynamic, 1> eigenPow = bases.pow(exponent_as_int);
for (int j = 0; j < num_vals; j++) {
Scalar e = static_cast<Scalar>(std::pow(bases(j), exponent));
Scalar a = eigenPow(j);
bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || ((numext::isnan)(a) && (numext::isnan)(e));
bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) ||
((numext::isnan)(a) && (numext::isnan)(e));
all_pass &= success;
if (!success) {
std::cout << "pow(" << x(i, j) << "," << y(i, j) << ") = " << a << " != " << e << std::endl;
std::cout << "pow(" << bases(j) << "," << exponent << ") = " << a << " != " << e << std::endl;
}
}
// test integer exponent code path
bool exponent_is_integer = (numext::isfinite)(exponent) && (numext::round(exponent) == exponent) && (numext::abs(exponent) < static_cast<Scalar>(NumTraits<Int_t>::highest()));
if (exponent_is_integer)
{
Int_t exponent_as_int = static_cast<Int_t>(exponent);
eigenPow.setZero();
eigenPow = bases.pow(exponent_as_int);
for (int j = 0; j < num_repeats; j++){
Scalar e = static_cast<Scalar>(std::pow(bases(j), exponent));
Scalar a = eigenPow(j);
bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || ((numext::isnan)(a) && (numext::isnan)(e));
all_pass &= success;
if (!success) {
std::cout << "pow(" << x(i, j) << "," << y(i, j) << ") = " << a << " != " << e << std::endl;
}
} else {
// test floating point exponent code path
Array<Scalar, Dynamic, 1> eigenPow = bases.pow(exponent);
for (int j = 0; j < num_vals; j++) {
Scalar e = static_cast<Scalar>(std::pow(bases(j), exponent));
Scalar a = eigenPow(j);
bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) ||
((numext::isnan)(a) && (numext::isnan)(e));
all_pass &= success;
if (!success) {
std::cout << "pow(" << bases(j) << "," << exponent << ") = " << a << " != " << e << std::endl;
}
}
}
}
}
VERIFY(all_pass);
}
@ -626,7 +639,10 @@ template<typename ArrayType> void array_real(const ArrayType& m)
// Avoid inf and NaN.
m3 = (m1.square()<NumTraits<Scalar>::epsilon()).select(Scalar(1),m3);
VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse());
pow_test<Scalar>();
// Test pow and atan2 on special IEEE values.
binary_ops_test<Scalar>();
pow_scalar_exponent_test<Scalar>();
VERIFY_IS_APPROX(log10(m3), log(m3)/numext::log(Scalar(10)));
VERIFY_IS_APPROX(log2(m3), log(m3)/numext::log(Scalar(2)));