mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 11:19:02 +08:00
Add certain functions to numext (log, exp, tan) because CUDA doesn't support std::
Use these in SpecialFunctions.
This commit is contained in:
parent
769685e74e
commit
14f0fde51f
@ -946,6 +946,13 @@ T (floor)(const T& x)
|
||||
return floor(x);
|
||||
}
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float floor(const float &x) { return ::floorf(x); }
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
double floor(const double &x) { return ::floor(x); }
|
||||
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC
|
||||
T (ceil)(const T& x)
|
||||
@ -985,6 +992,61 @@ T sqrt(const T &x)
|
||||
return sqrt(x);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T log(const T &x) {
|
||||
EIGEN_USING_STD_MATH(log);
|
||||
return log(x);
|
||||
}
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float log(const float &x) { return ::logf(x); }
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
double log(const double &x) { return ::log(x); }
|
||||
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T tan(const T &x) {
|
||||
EIGEN_USING_STD_MATH(tan);
|
||||
return tan(x);
|
||||
}
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float tan(const float &x) { return ::tanf(x); }
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
double tan(const double &x) { return ::tan(x); }
|
||||
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T abs(const T &x) {
|
||||
EIGEN_USING_STD_MATH(abs);
|
||||
return abs(x);
|
||||
}
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float abs(const float &x) { return ::fabsf(x); }
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
double abs(const double &x) { return ::fabs(x); }
|
||||
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
T exp(const T &x) {
|
||||
EIGEN_USING_STD_MATH(exp);
|
||||
return exp(x);
|
||||
}
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
float exp(const float &x) { return ::expf(x); }
|
||||
|
||||
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
|
||||
double exp(const double &x) { return ::exp(x); }
|
||||
|
||||
} // end namespace numext
|
||||
|
||||
namespace internal {
|
||||
|
@ -283,7 +283,7 @@ struct digamma_impl {
|
||||
Scalar p, q, nz, s, w, y;
|
||||
bool negative;
|
||||
|
||||
const Scalar maxnum = numext::numeric_limits<Scalar>::infinity();
|
||||
const Scalar maxnum = NumTraits<Scalar>::infinity();
|
||||
const Scalar m_pi = 3.14159265358979323846;
|
||||
|
||||
negative = 0;
|
||||
@ -296,7 +296,7 @@ struct digamma_impl {
|
||||
if (x <= zero) {
|
||||
negative = one;
|
||||
q = x;
|
||||
p = ::floor(q);
|
||||
p = numext::floor(q);
|
||||
if (p == q) {
|
||||
return maxnum;
|
||||
}
|
||||
@ -309,7 +309,7 @@ struct digamma_impl {
|
||||
p += one;
|
||||
nz = q - p;
|
||||
}
|
||||
nz = m_pi / ::tan(m_pi * nz);
|
||||
nz = m_pi / numext::tan(m_pi * nz);
|
||||
}
|
||||
else {
|
||||
nz = zero;
|
||||
@ -327,7 +327,7 @@ struct digamma_impl {
|
||||
|
||||
y = digamma_impl_maybe_poly<Scalar>::run(s);
|
||||
|
||||
y = ::log(s) - (half / s) - y - w;
|
||||
y = numext::log(s) - (half / s) - y - w;
|
||||
|
||||
return (negative) ? y - nz : y;
|
||||
}
|
||||
@ -401,6 +401,327 @@ struct erfc_impl<double> {
|
||||
};
|
||||
#endif // EIGEN_HAS_C99_MATH
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of igammac (complemented incomplete gamma integral) *
|
||||
****************************************************************************/
|
||||
|
||||
template <typename Scalar>
|
||||
struct igammac_retval {
|
||||
typedef Scalar type;
|
||||
};
|
||||
|
||||
#ifndef EIGEN_HAS_C99_MATH
|
||||
|
||||
template <typename Scalar>
|
||||
struct igammac_impl {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static Scalar run(Scalar a, Scalar x) {
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
||||
THIS_TYPE_IS_NOT_SUPPORTED);
|
||||
return Scalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
|
||||
|
||||
template <typename Scalar>
|
||||
struct igamma_helper {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct igamma_helper<float> {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static float machep() {
|
||||
return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static float big() {
|
||||
// use epsneg (1.0 - epsneg == 1.0)
|
||||
return 1.0 / (NumTraits<float>::epsilon() / 2);
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct igamma_helper<double> {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static double machep() {
|
||||
return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
static double big() {
|
||||
return 1.0 / NumTraits<double>::epsilon();
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Scalar>
|
||||
struct igammac_impl {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static Scalar run(Scalar a, Scalar x) {
|
||||
/* igamc()
|
||||
*
|
||||
* Incomplete gamma integral (modified for Eigen)
|
||||
*
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* double a, x, y, igamc();
|
||||
*
|
||||
* y = igamc( a, x );
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* The function is defined by
|
||||
*
|
||||
*
|
||||
* igamc(a,x) = 1 - igam(a,x)
|
||||
*
|
||||
* inf.
|
||||
* -
|
||||
* 1 | | -t a-1
|
||||
* = ----- | e t dt.
|
||||
* - | |
|
||||
* | (a) -
|
||||
* x
|
||||
*
|
||||
*
|
||||
* In this implementation both arguments must be positive.
|
||||
* The integral is evaluated by either a power series or
|
||||
* continued fraction expansion, depending on the relative
|
||||
* values of a and x.
|
||||
*
|
||||
* ACCURACY (float):
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE 0,30 30000 7.8e-6 5.9e-7
|
||||
*
|
||||
*
|
||||
* ACCURACY (double):
|
||||
*
|
||||
* Tested at random a, x.
|
||||
* a x Relative error:
|
||||
* arithmetic domain domain # trials peak rms
|
||||
* IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
|
||||
* IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
|
||||
*
|
||||
*/
|
||||
/*
|
||||
Cephes Math Library Release 2.2: June, 1992
|
||||
Copyright 1985, 1987, 1992 by Stephen L. Moshier
|
||||
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
||||
*/
|
||||
const Scalar zero = 0;
|
||||
const Scalar one = 1;
|
||||
const Scalar two = 2;
|
||||
const Scalar machep = igamma_helper<Scalar>::machep();
|
||||
const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
|
||||
const Scalar big = igamma_helper<Scalar>::big();
|
||||
const Scalar biginv = 1 / big;
|
||||
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
|
||||
const Scalar inf = NumTraits<Scalar>::infinity();
|
||||
|
||||
Scalar ans, ax, c, yc, r, t, y, z;
|
||||
Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
|
||||
|
||||
if ((x < zero) || ( a <= zero)) {
|
||||
// domain error
|
||||
return nan;
|
||||
}
|
||||
|
||||
if ((x < one) || (x < a)) {
|
||||
return (one - igamma_impl<Scalar>::run(a, x));
|
||||
}
|
||||
|
||||
if (x == inf) return zero; // std::isinf crashes on CUDA
|
||||
|
||||
/* Compute x**a * exp(-x) / gamma(a) */
|
||||
ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
|
||||
if (ax < -maxlog) { // underflow
|
||||
return zero;
|
||||
}
|
||||
ax = numext::exp(ax);
|
||||
|
||||
// continued fraction
|
||||
y = one - a;
|
||||
z = x + y + one;
|
||||
c = zero;
|
||||
pkm2 = one;
|
||||
qkm2 = x;
|
||||
pkm1 = x + one;
|
||||
qkm1 = z * x;
|
||||
ans = pkm1 / qkm1;
|
||||
|
||||
while (true) {
|
||||
c += one;
|
||||
y += one;
|
||||
z += two;
|
||||
yc = y * c;
|
||||
pk = pkm1 * z - pkm2 * yc;
|
||||
qk = qkm1 * z - qkm2 * yc;
|
||||
if (qk != zero) {
|
||||
r = pk / qk;
|
||||
t = numext::abs((ans - r) / r);
|
||||
ans = r;
|
||||
} else {
|
||||
t = one;
|
||||
}
|
||||
pkm2 = pkm1;
|
||||
pkm1 = pk;
|
||||
qkm2 = qkm1;
|
||||
qkm1 = qk;
|
||||
if (abs(pk) > big) {
|
||||
pkm2 *= biginv;
|
||||
pkm1 *= biginv;
|
||||
qkm2 *= biginv;
|
||||
qkm1 *= biginv;
|
||||
}
|
||||
if (t <= machep) break;
|
||||
}
|
||||
|
||||
return (ans * ax);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // EIGEN_HAS_C99_MATH
|
||||
|
||||
/****************************************************************************
|
||||
* Implementation of igamma (incomplete gamma integral) *
|
||||
****************************************************************************/
|
||||
|
||||
template <typename Scalar>
|
||||
struct igamma_retval {
|
||||
typedef Scalar type;
|
||||
};
|
||||
|
||||
#ifndef EIGEN_HAS_C99_MATH
|
||||
|
||||
template <typename Scalar>
|
||||
struct igamma_impl {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static Scalar run(Scalar a, Scalar x) {
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
||||
THIS_TYPE_IS_NOT_SUPPORTED);
|
||||
return Scalar(0);
|
||||
}
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
template <typename Scalar>
|
||||
struct igamma_impl {
|
||||
EIGEN_DEVICE_FUNC
|
||||
static Scalar run(Scalar a, Scalar x) {
|
||||
/* igam()
|
||||
* Incomplete gamma integral
|
||||
*
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* double a, x, y, igam();
|
||||
*
|
||||
* y = igam( a, x );
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* The function is defined by
|
||||
*
|
||||
* x
|
||||
* -
|
||||
* 1 | | -t a-1
|
||||
* igam(a,x) = ----- | e t dt.
|
||||
* - | |
|
||||
* | (a) -
|
||||
* 0
|
||||
*
|
||||
*
|
||||
* In this implementation both arguments must be positive.
|
||||
* The integral is evaluated by either a power series or
|
||||
* continued fraction expansion, depending on the relative
|
||||
* values of a and x.
|
||||
*
|
||||
* ACCURACY (double):
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE 0,30 200000 3.6e-14 2.9e-15
|
||||
* IEEE 0,100 300000 9.9e-14 1.5e-14
|
||||
*
|
||||
*
|
||||
* ACCURACY (float):
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE 0,30 20000 7.8e-6 5.9e-7
|
||||
*
|
||||
*/
|
||||
/*
|
||||
Cephes Math Library Release 2.2: June, 1992
|
||||
Copyright 1985, 1987, 1992 by Stephen L. Moshier
|
||||
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
||||
*/
|
||||
|
||||
|
||||
/* left tail of incomplete gamma function:
|
||||
*
|
||||
* inf. k
|
||||
* a -x - x
|
||||
* x e > ----------
|
||||
* - -
|
||||
* k=0 | (a+k+1)
|
||||
*
|
||||
*/
|
||||
const Scalar zero = 0;
|
||||
const Scalar one = 1;
|
||||
const Scalar machep = igamma_helper<Scalar>::machep();
|
||||
const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
|
||||
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
|
||||
|
||||
double ans, ax, c, r;
|
||||
|
||||
if (x == zero) return zero;
|
||||
|
||||
if ((x < zero) || ( a <= zero)) { // domain error
|
||||
return nan;
|
||||
}
|
||||
|
||||
if ((x > one) && (x > a)) {
|
||||
return (one - igammac_impl<Scalar>::run(a, x));
|
||||
}
|
||||
|
||||
/* Compute x**a * exp(-x) / gamma(a) */
|
||||
ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
|
||||
if (ax < -maxlog) {
|
||||
// underflow
|
||||
return zero;
|
||||
}
|
||||
ax = numext::exp(ax);
|
||||
|
||||
/* power series */
|
||||
r = a;
|
||||
c = one;
|
||||
ans = one;
|
||||
|
||||
while (true) {
|
||||
r += one;
|
||||
c *= x/r;
|
||||
ans += c;
|
||||
if (c/ans <= machep) break;
|
||||
}
|
||||
|
||||
return (ans * ax / a);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // EIGEN_HAS_C99_MATH
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
namespace numext {
|
||||
@ -429,8 +750,21 @@ EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
|
||||
return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
|
||||
igamma(const Scalar& a, const Scalar& x) {
|
||||
return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
|
||||
}
|
||||
|
||||
template <typename Scalar>
|
||||
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
|
||||
igammac(const Scalar& a, const Scalar& x) {
|
||||
return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
|
||||
}
|
||||
|
||||
} // end namespace numext
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPECIAL_FUNCTIONS_H
|
||||
|
Loading…
x
Reference in New Issue
Block a user