Euler tests: Tighter precision when no roll exists and clean code.

This commit is contained in:
Tal Hadad 2016-10-18 23:24:57 +03:00
parent 6f4f12d1ed
commit 15eca2432a

View File

@ -50,7 +50,7 @@ void verify_euler(const EulerAngles<Scalar, EulerSystem>& e)
std::cos(e.beta()) : std::cos(e.beta()) :
std::sin(e.beta()) std::sin(e.beta())
); );
const Scalar precision = test_precision<Scalar>() / longitudeRadius; Scalar precision = test_precision<Scalar>() / longitudeRadius;
Scalar betaRangeStart, betaRangeEnd; Scalar betaRangeStart, betaRangeEnd;
if (EulerSystem::IsTaitBryan) if (EulerSystem::IsTaitBryan)
@ -84,15 +84,22 @@ void verify_euler(const EulerAngles<Scalar, EulerSystem>& e)
const Matrix3 m(e); const Matrix3 m(e);
VERIFY_IS_APPROX(Scalar(m.determinant()), ONE); VERIFY_IS_APPROX(Scalar(m.determinant()), ONE);
Vector3 eabis = static_cast<EulerAnglesType>(m).angles(); EulerAnglesType ebis(m);
// When no roll(acting like polar representation), we have the best precision.
// One of those cases is when the Euler angles are on the pole, and because it's singular case,
// the computation returns no roll.
if (ebis.beta() == 0)
precision = test_precision<Scalar>();
// Check that eabis in range // Check that eabis in range
VERIFY_APPROXED_RANGE(-PI, eabis[0], PI); VERIFY_APPROXED_RANGE(-PI, ebis.alpha(), PI);
VERIFY_APPROXED_RANGE(betaRangeStart, eabis[1], betaRangeEnd); VERIFY_APPROXED_RANGE(betaRangeStart, ebis.beta(), betaRangeEnd);
VERIFY_APPROXED_RANGE(-PI, eabis[2], PI); VERIFY_APPROXED_RANGE(-PI, ebis.gamma(), PI);
const Matrix3 mbis(AngleAxisType(eabis[0], I) * AngleAxisType(eabis[1], J) * AngleAxisType(eabis[2], K)); const Matrix3 mbis(AngleAxisType(ebis.alpha(), I) * AngleAxisType(ebis.beta(), J) * AngleAxisType(ebis.gamma(), K));
VERIFY_IS_APPROX(Scalar(mbis.determinant()), ONE); VERIFY_IS_APPROX(Scalar(mbis.determinant()), ONE);
VERIFY_IS_APPROX(mbis, ebis.toRotationMatrix());
/*std::cout << "===================\n" << /*std::cout << "===================\n" <<
"e: " << e << std::endl << "e: " << e << std::endl <<
"eabis: " << eabis.transpose() << std::endl << "eabis: " << eabis.transpose() << std::endl <<
@ -116,8 +123,8 @@ void verify_euler(const EulerAngles<Scalar, EulerSystem>& e)
// Quaternions // Quaternions
const QuaternionType q(e); const QuaternionType q(e);
eabis = static_cast<EulerAnglesType>(q).angles(); ebis = q;
const QuaternionType qbis(AngleAxisType(eabis[0], I) * AngleAxisType(eabis[1], J) * AngleAxisType(eabis[2], K)); const QuaternionType qbis(ebis);
VERIFY(internal::isApprox<Scalar>(std::abs(q.dot(qbis)), ONE, precision)); VERIFY(internal::isApprox<Scalar>(std::abs(q.dot(qbis)), ONE, precision));
//VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same //VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
@ -170,7 +177,7 @@ template<typename Scalar> void check_singular_cases(const Scalar& singularBeta)
typedef Matrix<Scalar,3,1> Vector3; typedef Matrix<Scalar,3,1> Vector3;
const Scalar PI = Scalar(EIGEN_PI); const Scalar PI = Scalar(EIGEN_PI);
for (Scalar epsilon = std::numeric_limits<Scalar>::epsilon(); epsilon < 1; epsilon *= Scalar(1.2)) for (Scalar epsilon = NumTraits<Scalar>::epsilon(); epsilon < 1; epsilon *= Scalar(1.2))
{ {
check_all_var(Vector3(PI/4, singularBeta, PI/3)); check_all_var(Vector3(PI/4, singularBeta, PI/3));
check_all_var(Vector3(PI/4, singularBeta - epsilon, PI/3)); check_all_var(Vector3(PI/4, singularBeta - epsilon, PI/3));