mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-13 09:53:13 +08:00
add other stable norm impl. in the benchmark
This commit is contained in:
parent
525da6a464
commit
15ed32dd6e
@ -1,5 +1,5 @@
|
||||
#include <typeinfo>
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Array>
|
||||
#include "BenchTimer.h"
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
@ -27,22 +27,54 @@ EIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v)
|
||||
{
|
||||
typedef typename T::Scalar Scalar;
|
||||
int n = v.size();
|
||||
Scalar scale = 1;
|
||||
Scalar ssq = 0;
|
||||
Scalar scale = 0;
|
||||
Scalar ssq = 1;
|
||||
for (int i=0;i<n;++i)
|
||||
{
|
||||
Scalar ax = ei_abs(v.coeff(i));
|
||||
if (scale < ax)
|
||||
if (scale >= ax)
|
||||
{
|
||||
ssq += ei_abs2(ax/scale);
|
||||
}
|
||||
else
|
||||
{
|
||||
ssq = Scalar(1) + ssq * ei_abs2(scale/ax);
|
||||
scale = ax;
|
||||
}
|
||||
else
|
||||
ssq += ei_abs2(ax/scale);
|
||||
}
|
||||
return scale * ei_sqrt(ssq);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v)
|
||||
{
|
||||
typedef typename T::Scalar Scalar;
|
||||
Scalar s = v.cwise().abs().maxCoeff();
|
||||
return s*(v/s).norm();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v)
|
||||
{
|
||||
const int blockSize = 4096;
|
||||
typedef typename T::Scalar Scalar;
|
||||
Scalar s = 0;
|
||||
Scalar ssq = 0;
|
||||
for (int bi=0; bi<v.size(); bi+=blockSize)
|
||||
{
|
||||
int r = std::min(blockSize, v.size() - bi);
|
||||
Eigen::Block<typename ei_cleantype<T>::type,Eigen::Dynamic,1,Eigen::ForceAligned> sv(v,bi,0,r,1);
|
||||
Scalar m = sv.cwise().abs().maxCoeff();
|
||||
if (m>s)
|
||||
{
|
||||
ssq = ssq * ei_abs2(s/m);
|
||||
s = m;
|
||||
}
|
||||
ssq += (sv/s).squaredNorm();
|
||||
}
|
||||
return s*ei_sqrt(ssq);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v)
|
||||
{
|
||||
@ -210,6 +242,8 @@ void check_accuracy(double basef, double based, int s)
|
||||
std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n";
|
||||
std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n";
|
||||
std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n";
|
||||
std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\n";
|
||||
std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\n";
|
||||
}
|
||||
|
||||
void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s)
|
||||
@ -228,11 +262,13 @@ void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s)
|
||||
std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
|
||||
std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
|
||||
std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n";
|
||||
std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n";
|
||||
std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n";
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
int tries = 5;
|
||||
int tries = 10;
|
||||
int iters = 100000;
|
||||
double y = 1.1345743233455785456788e12 * ei_random<double>();
|
||||
VectorXf v = VectorXf::Ones(1024) * y;
|
||||
@ -240,33 +276,37 @@ int main(int argc, char** argv)
|
||||
std::cerr << "Performance (out of cache):\n";
|
||||
{
|
||||
int iters = 1;
|
||||
VectorXf vf = VectorXf::Ones(1024*1024*32) * y;
|
||||
VectorXd vd = VectorXd::Ones(1024*1024*32) * y;
|
||||
VectorXf vf = VectorXf::Random(1024*1024*32) * y;
|
||||
VectorXd vd = VectorXd::Random(1024*1024*32) * y;
|
||||
BENCH_PERF(sqsumNorm);
|
||||
BENCH_PERF(blueNorm);
|
||||
BENCH_PERF(pblueNorm);
|
||||
BENCH_PERF(lapackNorm);
|
||||
BENCH_PERF(hypotNorm);
|
||||
BENCH_PERF(twopassNorm);
|
||||
BENCH_PERF(bl2passNorm);
|
||||
}
|
||||
|
||||
std::cerr << "\nPerformance (in cache):\n";
|
||||
{
|
||||
int iters = 100000;
|
||||
VectorXf vf = VectorXf::Ones(512) * y;
|
||||
VectorXd vd = VectorXd::Ones(512) * y;
|
||||
VectorXf vf = VectorXf::Random(512) * y;
|
||||
VectorXd vd = VectorXd::Random(512) * y;
|
||||
BENCH_PERF(sqsumNorm);
|
||||
BENCH_PERF(blueNorm);
|
||||
BENCH_PERF(pblueNorm);
|
||||
BENCH_PERF(lapackNorm);
|
||||
BENCH_PERF(hypotNorm);
|
||||
BENCH_PERF(twopassNorm);
|
||||
BENCH_PERF(bl2passNorm);
|
||||
}
|
||||
|
||||
return 0;
|
||||
int s = 10000;
|
||||
double basef_ok = 1.1345743233455785456788e15;
|
||||
double based_ok = 1.1345743233455785456788e95;
|
||||
|
||||
double basef_under = 1.1345743233455785456788e-27;
|
||||
double based_under = 1.1345743233455785456788e-315;
|
||||
double based_under = 1.1345743233455785456788e-303;
|
||||
|
||||
double basef_over = 1.1345743233455785456788e+27;
|
||||
double based_over = 1.1345743233455785456788e+302;
|
||||
@ -283,9 +323,16 @@ int main(int argc, char** argv)
|
||||
check_accuracy(basef_over, based_over, s);
|
||||
|
||||
std::cerr << "\nVarying (over):\n";
|
||||
for (int k=0; k<5; ++k)
|
||||
for (int k=0; k<1; ++k)
|
||||
{
|
||||
check_accuracy_var(20,27,190,302,s);
|
||||
std::cout << "\n";
|
||||
}
|
||||
|
||||
std::cerr << "\nVarying (under):\n";
|
||||
for (int k=0; k<1; ++k)
|
||||
{
|
||||
check_accuracy_var(-27,20,-302,-190,s);
|
||||
std::cout << "\n";
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user