extend PermutationMatrix and Transpositions to support arbitrary interger types and to support the Map/Wrapper model via base and derived classes

This commit is contained in:
Gael Guennebaud 2011-01-26 16:33:23 +01:00
parent 84448b058c
commit 15ef62ca43
6 changed files with 656 additions and 272 deletions

View File

@ -277,6 +277,7 @@ template<typename Derived> class MatrixBase
static const BasisReturnType UnitW();
const DiagonalWrapper<const Derived> asDiagonal() const;
const PermutationWrapper<const Derived> asPermutation() const;
Derived& setIdentity();
Derived& setIdentity(Index rows, Index cols);

View File

@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -26,15 +26,17 @@
#ifndef EIGEN_PERMUTATIONMATRIX_H
#define EIGEN_PERMUTATIONMATRIX_H
/** \class PermutationMatrix
template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl;
/** \class PermutationBase
* \ingroup Core_Module
*
* \brief Permutation matrix
* \brief Base class for permutations
*
* \param SizeAtCompileTime the number of rows/cols, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
* \param Derived the derived class
*
* This class represents a permutation matrix, internally stored as a vector of integers.
* This class is the base class for all expressions representing a permutation matrix,
* internally stored as a vector of integers.
* The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix
* \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have:
* \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f]
@ -44,31 +46,29 @@
* Permutation matrices are square and invertible.
*
* Notice that in addition to the member functions and operators listed here, there also are non-member
* operator* to multiply a PermutationMatrix with any kind of matrix expression (MatrixBase) on either side.
* operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase)
* on either side.
*
* \sa class DiagonalMatrix
* \sa class PermutationMatrix, class PermutationWrapper
*/
namespace internal {
template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false> struct permut_matrix_product_retval;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
: traits<Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{};
template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false>
struct permut_matrix_product_retval;
enum PermPermProduct_t {PermPermProduct};
} // end namespace internal
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
class PermutationMatrix : public EigenBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
template<typename Derived>
class PermutationBase : public EigenBase<Derived>
{
typedef internal::traits<Derived> Traits;
typedef EigenBase<Derived> Base;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef internal::traits<PermutationMatrix> Traits;
typedef Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime>
DenseMatrixType;
typedef typename Traits::IndicesType IndicesType;
enum {
Flags = Traits::Flags,
CoeffReadCost = Traits::CoeffReadCost,
@ -79,9 +79,231 @@ class PermutationMatrix : public EigenBase<PermutationMatrix<SizeAtCompileTime,
};
typedef typename Traits::Scalar Scalar;
typedef typename Traits::Index Index;
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
DenseMatrixType;
typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index>
PlainPermutationType;
using Base::derived;
#endif
typedef Matrix<int, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
inline PermutationBase() {}
/** Copies the other permutation into *this */
template<typename OtherDerived>
Derived& operator=(const PermutationBase<OtherDerived>& other)
{
indices() = other.indices();
return derived();
}
/** Assignment from the Transpositions \a tr */
template<typename OtherDerived>
Derived& operator=(const TranspositionsBase<OtherDerived>& tr)
{
setIdentity(tr.size());
for(Index k=size()-1; k>=0; --k)
applyTranspositionOnTheRight(k,tr.coeff(k));
return derived();
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Derived& operator=(const PermutationBase& other)
{
indices() = other.indices();
return derived();
}
#endif
/** \returns the number of rows */
inline Index rows() const { return indices().size(); }
/** \returns the number of columns */
inline Index cols() const { return indices().size(); }
/** \returns the size of a side of the respective square matrix, i.e., the number of indices */
inline Index size() const { return indices().size(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived>& other) const
{
other.setZero();
for (int i=0; i<rows();++i)
other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1);
}
#endif
/** \returns a Matrix object initialized from this permutation matrix. Notice that it
* is inefficient to return this Matrix object by value. For efficiency, favor using
* the Matrix constructor taking EigenBase objects.
*/
DenseMatrixType toDenseMatrix() const
{
return derived();
}
/** const version of indices(). */
const IndicesType& indices() const { return derived().indices(); }
/** \returns a reference to the stored array representing the permutation. */
IndicesType& indices() { return derived().indices(); }
/** Resizes to given size.
*/
inline void resize(Index size)
{
indices().resize(size);
}
/** Sets *this to be the identity permutation matrix */
void setIdentity()
{
for(Index i = 0; i < size(); ++i)
indices().coeffRef(i) = i;
}
/** Sets *this to be the identity permutation matrix of given size.
*/
void setIdentity(Index size)
{
resize(size);
setIdentity();
}
/** Multiplies *this by the transposition \f$(ij)\f$ on the left.
*
* \returns a reference to *this.
*
* \warning This is much slower than applyTranspositionOnTheRight(int,int):
* this has linear complexity and requires a lot of branching.
*
* \sa applyTranspositionOnTheRight(int,int)
*/
Derived& applyTranspositionOnTheLeft(Index i, Index j)
{
eigen_assert(i>=0 && j>=0 && i<size() && j<size());
for(Index k = 0; k < size(); ++k)
{
if(indices().coeff(k) == i) indices().coeffRef(k) = j;
else if(indices().coeff(k) == j) indices().coeffRef(k) = i;
}
return derived();
}
/** Multiplies *this by the transposition \f$(ij)\f$ on the right.
*
* \returns a reference to *this.
*
* This is a fast operation, it only consists in swapping two indices.
*
* \sa applyTranspositionOnTheLeft(int,int)
*/
Derived& applyTranspositionOnTheRight(Index i, Index j)
{
eigen_assert(i>=0 && j>=0 && i<size() && j<size());
std::swap(indices().coeffRef(i), indices().coeffRef(j));
return derived();
}
/** \returns the inverse permutation matrix.
*
* \note \note_try_to_help_rvo
*/
inline Transpose<PermutationBase> inverse() const
{ return derived(); }
/** \returns the tranpose permutation matrix.
*
* \note \note_try_to_help_rvo
*/
inline Transpose<PermutationBase> transpose() const
{ return derived(); }
/**** multiplication helpers to hopefully get RVO ****/
#ifndef EIGEN_PARSED_BY_DOXYGEN
protected:
template<typename OtherDerived>
void assignTranspose(const PermutationBase<OtherDerived>& other)
{
for (int i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
}
template<typename Lhs,typename Rhs>
void assignProduct(const Lhs& lhs, const Rhs& rhs)
{
eigen_assert(lhs.cols() == rhs.rows());
for (int i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
}
#endif
public:
/** \returns the product permutation matrix.
*
* \note \note_try_to_help_rvo
*/
template<typename Other>
inline PlainPermutationType operator*(const PermutationBase<Other>& other) const
{ return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); }
/** \returns the product of a permutation with another inverse permutation.
*
* \note \note_try_to_help_rvo
*/
template<typename Other>
inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other) const
{ return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); }
/** \returns the product of an inverse permutation with another permutation.
*
* \note \note_try_to_help_rvo
*/
template<typename Other> friend
inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm)
{ return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); }
protected:
};
/** \class PermutationMatrix
* \ingroup Core_Module
*
* \brief Permutation matrix
*
* \param SizeAtCompileTime the number of rows/cols, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
* \param IndexType the interger type of the indices
*
* This class represents a permutation matrix, internally stored as a vector of integers.
*
* \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
*/
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
: traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef IndexType Index;
typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
{
typedef PermutationBase<PermutationMatrix> Base;
typedef internal::traits<PermutationMatrix> Traits;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
#endif
inline PermutationMatrix()
{}
@ -92,8 +314,8 @@ class PermutationMatrix : public EigenBase<PermutationMatrix<SizeAtCompileTime,
{}
/** Copy constructor. */
template<int OtherSize, int OtherMaxSize>
inline PermutationMatrix(const PermutationMatrix<OtherSize, OtherMaxSize>& other)
template<typename OtherDerived>
inline PermutationMatrix(const PermutationBase<OtherDerived>& other)
: m_indices(other.indices()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
@ -114,29 +336,26 @@ class PermutationMatrix : public EigenBase<PermutationMatrix<SizeAtCompileTime,
{}
/** Convert the Transpositions \a tr to a permutation matrix */
template<int OtherSize, int OtherMaxSize>
explicit PermutationMatrix(const Transpositions<OtherSize,OtherMaxSize>& tr)
template<typename Other>
explicit PermutationMatrix(const TranspositionsBase<Other>& tr)
: m_indices(tr.size())
{
*this = tr;
}
/** Copies the other permutation into *this */
template<int OtherSize, int OtherMaxSize>
PermutationMatrix& operator=(const PermutationMatrix<OtherSize, OtherMaxSize>& other)
template<typename Other>
PermutationMatrix& operator=(const PermutationBase<Other>& other)
{
m_indices = other.indices();
return *this;
}
/** Assignment from the Transpositions \a tr */
template<int OtherSize, int OtherMaxSize>
PermutationMatrix& operator=(const Transpositions<OtherSize,OtherMaxSize>& tr)
template<typename Other>
PermutationMatrix& operator=(const TranspositionsBase<Other>& tr)
{
setIdentity(tr.size());
for(Index k=size()-1; k>=0; --k)
applyTranspositionOnTheRight(k,tr.coeff(k));
return *this;
return Base::operator=(tr.derived());
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
@ -150,182 +369,178 @@ class PermutationMatrix : public EigenBase<PermutationMatrix<SizeAtCompileTime,
}
#endif
/** \returns the number of rows */
inline Index rows() const { return m_indices.size(); }
/** \returns the number of columns */
inline Index cols() const { return m_indices.size(); }
/** \returns the size of a side of the respective square matrix, i.e., the number of indices */
inline Index size() const { return m_indices.size(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived>& other) const
{
other.setZero();
for (int i=0; i<rows();++i)
other.coeffRef(m_indices.coeff(i),i) = typename DenseDerived::Scalar(1);
}
#endif
/** \returns a Matrix object initialized from this permutation matrix. Notice that it
* is inefficient to return this Matrix object by value. For efficiency, favor using
* the Matrix constructor taking EigenBase objects.
*/
DenseMatrixType toDenseMatrix() const
{
return *this;
}
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the permutation. */
IndicesType& indices() { return m_indices; }
/** Resizes to given size.
*/
inline void resize(Index size)
{
m_indices.resize(size);
}
/** Sets *this to be the identity permutation matrix */
void setIdentity()
{
for(Index i = 0; i < m_indices.size(); ++i)
m_indices.coeffRef(i) = i;
}
/** Sets *this to be the identity permutation matrix of given size.
*/
void setIdentity(Index size)
{
resize(size);
setIdentity();
}
/** Multiplies *this by the transposition \f$(ij)\f$ on the left.
*
* \returns a reference to *this.
*
* \warning This is much slower than applyTranspositionOnTheRight(int,int):
* this has linear complexity and requires a lot of branching.
*
* \sa applyTranspositionOnTheRight(int,int)
*/
PermutationMatrix& applyTranspositionOnTheLeft(Index i, Index j)
{
eigen_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size());
for(Index k = 0; k < m_indices.size(); ++k)
{
if(m_indices.coeff(k) == i) m_indices.coeffRef(k) = j;
else if(m_indices.coeff(k) == j) m_indices.coeffRef(k) = i;
}
return *this;
}
/** Multiplies *this by the transposition \f$(ij)\f$ on the right.
*
* \returns a reference to *this.
*
* This is a fast operation, it only consists in swapping two indices.
*
* \sa applyTranspositionOnTheLeft(int,int)
*/
PermutationMatrix& applyTranspositionOnTheRight(Index i, Index j)
{
eigen_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size());
std::swap(m_indices.coeffRef(i), m_indices.coeffRef(j));
return *this;
}
/** \returns the inverse permutation matrix.
*
* \note \note_try_to_help_rvo
*/
inline Transpose<PermutationMatrix> inverse() const
{ return *this; }
/** \returns the tranpose permutation matrix.
*
* \note \note_try_to_help_rvo
*/
inline Transpose<PermutationMatrix> transpose() const
{ return *this; }
/**** multiplication helpers to hopefully get RVO ****/
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<int OtherSize, int OtherMaxSize>
PermutationMatrix(const Transpose<PermutationMatrix<OtherSize,OtherMaxSize> >& other)
template<typename Other>
PermutationMatrix(const Transpose<PermutationBase<Other> >& other)
: m_indices(other.nestedPermutation().size())
{
for (int i=0; i<rows();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i;
for (int i=0; i<m_indices.size();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i;
}
protected:
enum Product_t {Product};
PermutationMatrix(Product_t, const PermutationMatrix& lhs, const PermutationMatrix& rhs)
: m_indices(lhs.m_indices.size())
template<typename Lhs,typename Rhs>
PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs)
: m_indices(lhs.indices().size())
{
eigen_assert(lhs.cols() == rhs.rows());
for (int i=0; i<rows();++i) m_indices.coeffRef(i) = lhs.m_indices.coeff(rhs.m_indices.coeff(i));
Base::assignProduct(lhs,rhs);
}
#endif
public:
/** \returns the product permutation matrix.
*
* \note \note_try_to_help_rvo
*/
template<int OtherSize, int OtherMaxSize>
inline PermutationMatrix operator*(const PermutationMatrix<OtherSize, OtherMaxSize>& other) const
{ return PermutationMatrix(Product, *this, other); }
/** \returns the product of a permutation with another inverse permutation.
*
* \note \note_try_to_help_rvo
*/
template<int OtherSize, int OtherMaxSize>
inline PermutationMatrix operator*(const Transpose<PermutationMatrix<OtherSize,OtherMaxSize> >& other) const
{ return PermutationMatrix(Product, *this, other.eval()); }
/** \returns the product of an inverse permutation with another permutation.
*
* \note \note_try_to_help_rvo
*/
template<int OtherSize, int OtherMaxSize> friend
inline PermutationMatrix operator*(const Transpose<PermutationMatrix<OtherSize,OtherMaxSize> >& other, const PermutationMatrix& perm)
{ return PermutationMatrix(Product, other.eval(), perm); }
protected:
IndicesType m_indices;
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
: traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef IndexType Index;
typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess>
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
{
typedef PermutationBase<Map> Base;
typedef internal::traits<Map> Traits;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
#endif
inline Map(const Index* indices)
: m_indices(indices)
{}
inline Map(const Index* indices, Index size)
: m_indices(indices,size)
{}
/** Copies the other permutation into *this */
template<typename Other>
Map& operator=(const PermutationBase<Other>& other)
{ return Base::operator=(other.derived()); }
/** Assignment from the Transpositions \a tr */
template<typename Other>
Map& operator=(const TranspositionsBase<Other>& tr)
{ return Base::operator=(tr.derived()); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Map& operator=(const Map& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the permutation. */
IndicesType& indices() { return m_indices; }
protected:
IndicesType m_indices;
};
/** \class PermutationWrapper
* \ingroup Core_Module
*
* \brief Class to view a vector of integers as a permutation matrix
*
* \param _IndicesType the type of the vector of integer (can be any compatible expression)
*
* This class allows to view any vector expression of integers as a permutation matrix.
*
* \sa class PermutationBase, class PermutationMatrix
*/
struct PermutationStorage {};
template<typename _IndicesType> class TranspositionsWrapper;
namespace internal {
template<typename _IndicesType>
struct traits<PermutationWrapper<_IndicesType> >
{
typedef PermutationStorage StorageKind;
typedef typename _IndicesType::Scalar Scalar;
typedef typename _IndicesType::Scalar Index;
typedef _IndicesType IndicesType;
enum {
RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime,
Flags = 0,
CoeffReadCost = _IndicesType::CoeffReadCost
};
};
}
template<typename _IndicesType>
class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
{
typedef PermutationBase<PermutationWrapper> Base;
typedef internal::traits<PermutationWrapper> Traits;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
#endif
inline PermutationWrapper(const IndicesType& indices)
: m_indices(indices)
{}
/** const version of indices(). */
const typename internal::remove_all<typename IndicesType::Nested>::type&
indices() const { return m_indices; }
protected:
const typename IndicesType::Nested m_indices;
};
/** \returns the matrix with the permutation applied to the columns.
*/
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
inline const internal::permut_matrix_product_retval<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
template<typename Derived, typename PermutationDerived>
inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight>
operator*(const MatrixBase<Derived>& matrix,
const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation)
const PermutationBase<PermutationDerived> &permutation)
{
return internal::permut_matrix_product_retval
<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
(permutation, matrix.derived());
<PermutationDerived, Derived, OnTheRight>
(permutation.derived(), matrix.derived());
}
/** \returns the matrix with the permutation applied to the rows.
*/
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
template<typename Derived, typename PermutationDerived>
inline const internal::permut_matrix_product_retval
<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
operator*(const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation,
<PermutationDerived, Derived, OnTheLeft>
operator*(const PermutationBase<PermutationDerived> &permutation,
const MatrixBase<Derived>& matrix)
{
return internal::permut_matrix_product_retval
<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
(permutation, matrix.derived());
<PermutationDerived, Derived, OnTheLeft>
(permutation.derived(), matrix.derived());
}
namespace internal {
@ -402,25 +617,25 @@ struct permut_matrix_product_retval
/* Template partial specialization for transposed/inverse permutations */
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct traits<Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > >
: traits<Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
template<typename Derived>
struct traits<Transpose<PermutationBase<Derived> > >
: traits<Derived>
{};
} // end namespace internal
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
class Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
: public EigenBase<Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > >
template<typename Derived>
class Transpose<PermutationBase<Derived> >
: public EigenBase<Transpose<PermutationBase<Derived> > >
{
typedef PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> PermutationType;
typedef Derived PermutationType;
typedef typename PermutationType::IndicesType IndicesType;
typedef typename PermutationType::PlainPermutationType PlainPermutationType;
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef internal::traits<PermutationType> Traits;
typedef Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime>
DenseMatrixType;
typedef typename Derived::DenseMatrixType DenseMatrixType;
enum {
Flags = Traits::Flags,
CoeffReadCost = Traits::CoeffReadCost,
@ -448,26 +663,26 @@ class Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
#endif
/** \return the equivalent permutation matrix */
PermutationType eval() const { return *this; }
PlainPermutationType eval() const { return *this; }
DenseMatrixType toDenseMatrix() const { return *this; }
/** \returns the matrix with the inverse permutation applied to the columns.
*/
template<typename Derived> friend
inline const internal::permut_matrix_product_retval<PermutationType, Derived, OnTheRight, true>
operator*(const MatrixBase<Derived>& matrix, const Transpose& trPerm)
template<typename OtherDerived> friend
inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>
operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm)
{
return internal::permut_matrix_product_retval<PermutationType, Derived, OnTheRight, true>(trPerm.m_permutation, matrix.derived());
return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived());
}
/** \returns the matrix with the inverse permutation applied to the rows.
*/
template<typename Derived>
inline const internal::permut_matrix_product_retval<PermutationType, Derived, OnTheLeft, true>
operator*(const MatrixBase<Derived>& matrix) const
template<typename OtherDerived>
inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>
operator*(const MatrixBase<OtherDerived>& matrix) const
{
return internal::permut_matrix_product_retval<PermutationType, Derived, OnTheLeft, true>(m_permutation, matrix.derived());
return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived());
}
const PermutationType& nestedPermutation() const { return m_permutation; }
@ -476,4 +691,10 @@ class Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
const PermutationType& m_permutation;
};
template<typename Derived>
const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const
{
return derived();
}
#endif // EIGEN_PERMUTATIONMATRIX_H

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -58,88 +58,72 @@ namespace internal {
template<typename TranspositionType, typename MatrixType, int Side, bool Transposed=false> struct transposition_matrix_product_retval;
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
class Transpositions
template<typename Derived>
class TranspositionsBase
{
typedef internal::traits<Derived> Traits;
public:
typedef Matrix<DenseIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef typename IndicesType::Index Index;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
inline Transpositions() {}
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
/** Copy constructor. */
template<int OtherSize, int OtherMaxSize>
inline Transpositions(const Transpositions<OtherSize, OtherMaxSize>& other)
: m_indices(other.indices()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Standard copy constructor. Defined only to prevent a default copy constructor
* from hiding the other templated constructor */
inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
#endif
/** Generic constructor from expression of the transposition indices. */
template<typename Other>
explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices)
{}
inline TranspositionsBase() {}
/** Copies the \a other transpositions into \c *this */
template<int OtherSize, int OtherMaxSize>
Transpositions& operator=(const Transpositions<OtherSize, OtherMaxSize>& other)
template<typename OtherDerived>
Derived& operator=(const TranspositionsBase<OtherDerived>& other)
{
m_indices = other.indices();
return *this;
indices() = other.indices();
return derived();
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Transpositions& operator=(const Transpositions& other)
Derived& operator=(const TranspositionsBase& other)
{
m_indices = other.m_indices;
return *this;
indices() = other.indices();
return derived();
}
#endif
/** Constructs an uninitialized permutation matrix of given size.
*/
inline Transpositions(Index size) : m_indices(size)
{}
/** \returns the number of transpositions */
inline Index size() const { return m_indices.size(); }
inline Index size() const { return indices().size(); }
/** Direct access to the underlying index vector */
inline const Index& coeff(Index i) const { return m_indices.coeff(i); }
inline const Index& coeff(Index i) const { return indices().coeff(i); }
/** Direct access to the underlying index vector */
inline Index& coeffRef(Index i) { return m_indices.coeffRef(i); }
inline Index& coeffRef(Index i) { return indices().coeffRef(i); }
/** Direct access to the underlying index vector */
inline const Index& operator()(Index i) const { return m_indices(i); }
inline const Index& operator()(Index i) const { return indices()(i); }
/** Direct access to the underlying index vector */
inline Index& operator()(Index i) { return m_indices(i); }
inline Index& operator()(Index i) { return indices()(i); }
/** Direct access to the underlying index vector */
inline const Index& operator[](Index i) const { return m_indices(i); }
inline const Index& operator[](Index i) const { return indices()(i); }
/** Direct access to the underlying index vector */
inline Index& operator[](Index i) { return m_indices(i); }
inline Index& operator[](Index i) { return indices()(i); }
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
const IndicesType& indices() const { return derived().indices(); }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
IndicesType& indices() { return derived().indices(); }
/** Resizes to given size. */
inline void resize(int size)
{
m_indices.resize(size);
indices().resize(size);
}
/** Sets \c *this to represents an identity transformation */
void setIdentity()
{
for(int i = 0; i < m_indices.size(); ++i)
m_indices.coeffRef(i) = i;
for(int i = 0; i < indices().size(); ++i)
coeffRef(i) = i;
}
// FIXME: do we want such methods ?
@ -164,53 +148,220 @@ class Transpositions
*/
/** \returns the inverse transformation */
inline Transpose<Transpositions> inverse() const
{ return *this; }
inline Transpose<TranspositionsBase> inverse() const
{ return Transpose<TranspositionsBase>(derived()); }
/** \returns the tranpose transformation */
inline Transpose<Transpositions> transpose() const
{ return *this; }
inline Transpose<TranspositionsBase> transpose() const
{ return Transpose<TranspositionsBase>(derived()); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<int OtherSize, int OtherMaxSize>
Transpositions(const Transpose<Transpositions<OtherSize,OtherMaxSize> >& other)
: m_indices(other.size())
protected:
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
{
typedef IndexType Index;
typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
{
typedef internal::traits<Transpositions> Traits;
public:
typedef TranspositionsBase<Transpositions> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
inline Transpositions() {}
/** Copy constructor. */
template<typename OtherDerived>
inline Transpositions(const TranspositionsBase<OtherDerived>& other)
: m_indices(other.indices()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Standard copy constructor. Defined only to prevent a default copy constructor
* from hiding the other templated constructor */
inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
#endif
/** Generic constructor from expression of the transposition indices. */
template<typename Other>
explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices)
{}
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
Transpositions& operator=(const TranspositionsBase<OtherDerived>& other)
{
Index n = size();
Index j = size-1;
for(Index i=0; i<n;++i,--j)
m_indices.coeffRef(j) = other.nestedTranspositions().indices().coeff(i);
return Base::operator=(other);
}
#endif
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Transpositions& operator=(const Transpositions& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** Constructs an uninitialized permutation matrix of given size.
*/
inline Transpositions(Index size) : m_indices(size)
{}
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
protected:
IndicesType m_indices;
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,_PacketAccess> >
{
typedef IndexType Index;
typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int PacketAccess>
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess>
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess> >
{
typedef internal::traits<Map> Traits;
public:
typedef TranspositionsBase<Map> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
inline Map(const Index* indices)
: m_indices(indices)
{}
inline Map(const Index* indices, Index size)
: m_indices(indices,size)
{}
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
Map& operator=(const TranspositionsBase<OtherDerived>& other)
{
return Base::operator=(other);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Map& operator=(const Map& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
protected:
IndicesType m_indices;
};
namespace internal {
template<typename _IndicesType>
struct traits<TranspositionsWrapper<_IndicesType> >
{
typedef typename _IndicesType::Scalar Index;
typedef _IndicesType IndicesType;
};
}
template<typename _IndicesType>
class TranspositionsWrapper
: public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
{
typedef internal::traits<TranspositionsWrapper> Traits;
public:
typedef TranspositionsBase<TranspositionsWrapper> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
inline TranspositionsWrapper(IndicesType& indices)
: m_indices(indices)
{}
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other)
{
return Base::operator=(other);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
TranspositionsWrapper& operator=(const TranspositionsWrapper& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
protected:
const typename IndicesType::Nested m_indices;
};
/** \returns the \a matrix with the \a transpositions applied to the columns.
*/
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
inline const internal::transposition_matrix_product_retval<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
template<typename Derived, typename TranspositionsDerived>
inline const internal::transposition_matrix_product_retval<TranspositionsDerived, Derived, OnTheRight>
operator*(const MatrixBase<Derived>& matrix,
const Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> &transpositions)
const TranspositionsBase<TranspositionsDerived> &transpositions)
{
return internal::transposition_matrix_product_retval
<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
(transpositions, matrix.derived());
<TranspositionsDerived, Derived, OnTheRight>
(transpositions.derived(), matrix.derived());
}
/** \returns the \a matrix with the \a transpositions applied to the rows.
*/
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
template<typename Derived, typename TranspositionDerived>
inline const internal::transposition_matrix_product_retval
<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
operator*(const Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> &transpositions,
<TranspositionDerived, Derived, OnTheLeft>
operator*(const TranspositionsBase<TranspositionDerived> &transpositions,
const MatrixBase<Derived>& matrix)
{
return internal::transposition_matrix_product_retval
<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
(transpositions, matrix.derived());
<TranspositionDerived, Derived, OnTheLeft>
(transpositions.derived(), matrix.derived());
}
namespace internal {
@ -262,10 +413,10 @@ struct transposition_matrix_product_retval
/* Template partial specialization for transposed/inverse transpositions */
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
class Transpose<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> >
template<typename TranspositionsDerived>
class Transpose<TranspositionsBase<TranspositionsDerived> >
{
typedef Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> TranspositionType;
typedef TranspositionsDerived TranspositionType;
typedef typename TranspositionType::IndicesType IndicesType;
public:
@ -291,8 +442,6 @@ class Transpose<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> >
return internal::transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>(m_transpositions, matrix.derived());
}
const TranspositionType& nestedTranspositions() const { return m_transpositions; }
protected:
const TranspositionType& m_transpositions;
};

View File

@ -101,8 +101,12 @@ template<typename _DiagonalVectorType> class DiagonalWrapper;
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime=SizeAtCompileTime> class DiagonalMatrix;
template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct;
template<typename MatrixType, int Index = 0> class Diagonal;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime> class PermutationMatrix;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime> class Transpositions;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class PermutationMatrix;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime, typename IndexType=int> class Transpositions;
template<typename Derived> class PermutationBase;
template<typename Derived> class TranspositionsBase;
template<typename _IndicesType> class PermutationWrapper;
template<typename _IndicesType> class TranspositionsWrapper;
template<typename Derived,
int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors

View File

@ -225,7 +225,7 @@ PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
namespace internal {
/** \internal This is the blocked version of fullpivlu_unblocked() */
template<typename Scalar, int StorageOrder, typename PivIndex=DenseIndex>
template<typename Scalar, int StorageOrder, typename PivIndex>
struct partial_lu_impl
{
// FIXME add a stride to Map, so that the following mapping becomes easier,
@ -384,13 +384,13 @@ struct partial_lu_impl
/** \internal performs the LU decomposition with partial pivoting in-place.
*/
template<typename MatrixType, typename TranspositionType>
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename MatrixType::Index& nb_transpositions)
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
{
eigen_assert(lu.cols() == row_transpositions.size());
eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
partial_lu_impl
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor>
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
}
@ -406,7 +406,7 @@ PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& ma
m_rowsTranspositions.resize(size);
Index nb_transpositions;
typename TranspositionType::Index nb_transpositions;
internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
m_det_p = (nb_transpositions%2) ? -1 : 1;

View File

@ -51,8 +51,10 @@ template<typename MatrixType> void permutationmatrices(const MatrixType& m)
Options = MatrixType::Options };
typedef PermutationMatrix<Rows> LeftPermutationType;
typedef Matrix<int, Rows, 1> LeftPermutationVectorType;
typedef Map<LeftPermutationType> MapLeftPerm;
typedef PermutationMatrix<Cols> RightPermutationType;
typedef Matrix<int, Cols, 1> RightPermutationVectorType;
typedef Map<RightPermutationType> MapRightPerm;
Index rows = m.rows();
Index cols = m.cols();
@ -76,13 +78,20 @@ template<typename MatrixType> void permutationmatrices(const MatrixType& m)
VERIFY_IS_APPROX(m_permuted, lm*m_original*rm);
VERIFY_IS_APPROX(lp.inverse()*m_permuted*rp.inverse(), m_original);
VERIFY_IS_APPROX(lv.asPermutation().inverse()*m_permuted*rv.asPermutation().inverse(), m_original);
VERIFY_IS_APPROX(MapLeftPerm(lv.data(),lv.size()).inverse()*m_permuted*MapRightPerm(rv.data(),rv.size()).inverse(), m_original);
VERIFY((lp*lp.inverse()).toDenseMatrix().isIdentity());
VERIFY((lv.asPermutation()*lv.asPermutation().inverse()).toDenseMatrix().isIdentity());
VERIFY((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv.data(),lv.size()).inverse()).toDenseMatrix().isIdentity());
LeftPermutationVectorType lv2;
randomPermutationVector(lv2, rows);
LeftPermutationType lp2(lv2);
Matrix<Scalar,Rows,Rows> lm2(lp2);
VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast<Scalar>(), lm*lm2);
VERIFY_IS_APPROX((lv.asPermutation()*lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm*lm2);
VERIFY_IS_APPROX((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv2.data(),lv2.size())).toDenseMatrix().template cast<Scalar>(), lm*lm2);
LeftPermutationType identityp;
identityp.setIdentity(rows);