Pulled in the latest changes from the Eigen trunk

This commit is contained in:
Benoit Steiner 2014-08-13 22:25:29 -07:00
commit 16047c8d4a
211 changed files with 2321 additions and 13262 deletions

View File

@ -108,7 +108,8 @@ endif()
set(EIGEN_TEST_MAX_SIZE "320" CACHE STRING "Maximal matrix/vector size, default is 320")
macro(ei_add_cxx_compiler_flag FLAG)
string(REGEX REPLACE "-" "" SFLAG ${FLAG})
string(REGEX REPLACE "-" "" SFLAG1 ${FLAG})
string(REGEX REPLACE "\\+" "p" SFLAG ${SFLAG1})
check_cxx_compiler_flag(${FLAG} COMPILER_SUPPORT_${SFLAG})
if(COMPILER_SUPPORT_${SFLAG})
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLAG}")
@ -118,7 +119,7 @@ endmacro(ei_add_cxx_compiler_flag)
if(NOT MSVC)
# We assume that other compilers are partly compatible with GNUCC
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fexceptions")
# set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fexceptions")
set(CMAKE_CXX_FLAGS_DEBUG "-g3")
set(CMAKE_CXX_FLAGS_RELEASE "-g0 -O2")
@ -142,6 +143,9 @@ if(NOT MSVC)
ei_add_cxx_compiler_flag("-Wpointer-arith")
ei_add_cxx_compiler_flag("-Wwrite-strings")
ei_add_cxx_compiler_flag("-Wformat-security")
ei_add_cxx_compiler_flag("-Wshorten-64-to-32")
ei_add_cxx_compiler_flag("-Wenum-conversion")
ei_add_cxx_compiler_flag("-Wc++11-extensions")
ei_add_cxx_compiler_flag("-Wno-psabi")
ei_add_cxx_compiler_flag("-Wno-variadic-macros")
@ -153,6 +157,7 @@ if(NOT MSVC)
ei_add_cxx_compiler_flag("-wd981") # disable ICC's "operands are evaluated in unspecified order" remark
ei_add_cxx_compiler_flag("-wd2304") # disbale ICC's "warning #2304: non-explicit constructor with single argument may cause implicit type conversion" produced by -Wnon-virtual-dtor
# The -ansi flag must be added last, otherwise it is also used as a linker flag by check_cxx_compiler_flag making it fails
# Moreover we should not set both -strict-ansi and -ansi
check_cxx_compiler_flag("-strict-ansi" COMPILER_SUPPORT_STRICTANSI)
@ -296,6 +301,12 @@ if(EIGEN_TEST_NO_EXPLICIT_ALIGNMENT)
message(STATUS "Disabling alignment in tests/examples")
endif()
option(EIGEN_TEST_NO_EXCEPTIONS "Disables C++ exceptions" OFF)
if(EIGEN_TEST_NO_EXCEPTIONS)
ei_add_cxx_compiler_flag("-fno-exceptions")
message(STATUS "Disabling exceptions in tests/examples")
endif()
option(EIGEN_TEST_C++0x "Enables all C++0x features." OFF)
include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})

View File

@ -1,11 +0,0 @@
#ifndef EIGEN_ARRAY_MODULE_H
#define EIGEN_ARRAY_MODULE_H
// include Core first to handle Eigen2 support macros
#include "Core"
#ifndef EIGEN2_SUPPORT
#error The Eigen/Array header does no longer exist in Eigen3. All that functionality has moved to Eigen/Core.
#endif
#endif // EIGEN_ARRAY_MODULE_H

View File

@ -42,6 +42,14 @@
#define EIGEN_USING_STD_MATH(FUNC) using std::FUNC;
#endif
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__)
#define EIGEN_EXCEPTIONS
#endif
#ifdef EIGEN_EXCEPTIONS
#include <new>
#endif
// then include this file where all our macros are defined. It's really important to do it first because
// it's where we do all the alignment settings (platform detection and honoring the user's will if he
// defined e.g. EIGEN_DONT_ALIGN) so it needs to be done before we do anything with vectorization.
@ -205,18 +213,10 @@
#endif
// required for __cpuid, needs to be included after cmath
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64))
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE))
#include <intrin.h>
#endif
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__)
#define EIGEN_EXCEPTIONS
#endif
#ifdef EIGEN_EXCEPTIONS
#include <new>
#endif
/** \brief Namespace containing all symbols from the %Eigen library. */
namespace Eigen {
@ -244,34 +244,9 @@ inline static const char *SimdInstructionSetsInUse(void) {
} // end namespace Eigen
#define STAGE10_FULL_EIGEN2_API 10
#define STAGE20_RESOLVE_API_CONFLICTS 20
#define STAGE30_FULL_EIGEN3_API 30
#define STAGE40_FULL_EIGEN3_STRICTNESS 40
#define STAGE99_NO_EIGEN2_SUPPORT 99
#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE40_FULL_EIGEN3_STRICTNESS
#elif defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
#elif defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE20_RESOLVE_API_CONFLICTS
#elif defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE10_FULL_EIGEN2_API
#elif defined EIGEN2_SUPPORT
// default to stage 3, that's what it's always meant
#define EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
#define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
#else
#define EIGEN2_SUPPORT_STAGE STAGE99_NO_EIGEN2_SUPPORT
#endif
#ifdef EIGEN2_SUPPORT
#undef minor
#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS || defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API || defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS || defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API || defined EIGEN2_SUPPORT
// This will generate an error message:
#error Eigen2-support is only available up to version 3.2. Please go to "http://eigen.tuxfamily.org/index.php?title=Eigen2" for further information
#endif
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
@ -429,8 +404,4 @@ using std::ptrdiff_t;
#include "src/Core/util/ReenableStupidWarnings.h"
#ifdef EIGEN2_SUPPORT
#include "Eigen2Support"
#endif
#endif // EIGEN_CORE_H

View File

@ -1,82 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2SUPPORT_H
#define EIGEN2SUPPORT_H
#if (!defined(EIGEN2_SUPPORT)) || (!defined(EIGEN_CORE_H))
#error Eigen2 support must be enabled by defining EIGEN2_SUPPORT before including any Eigen header
#endif
#include "src/Core/util/DisableStupidWarnings.h"
/** \ingroup Support_modules
* \defgroup Eigen2Support_Module Eigen2 support module
* This module provides a couple of deprecated functions improving the compatibility with Eigen2.
*
* To use it, define EIGEN2_SUPPORT before including any Eigen header
* \code
* #define EIGEN2_SUPPORT
* \endcode
*
*/
#include "src/Eigen2Support/Macros.h"
#include "src/Eigen2Support/Memory.h"
#include "src/Eigen2Support/Meta.h"
#include "src/Eigen2Support/Lazy.h"
#include "src/Eigen2Support/Cwise.h"
#include "src/Eigen2Support/CwiseOperators.h"
#include "src/Eigen2Support/TriangularSolver.h"
#include "src/Eigen2Support/Block.h"
#include "src/Eigen2Support/VectorBlock.h"
#include "src/Eigen2Support/Minor.h"
#include "src/Eigen2Support/MathFunctions.h"
#include "src/Core/util/ReenableStupidWarnings.h"
// Eigen2 used to include iostream
#include<iostream>
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_MATRIX_TYPEDEFS \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
#define USING_PART_OF_NAMESPACE_EIGEN \
EIGEN_USING_MATRIX_TYPEDEFS \
using Eigen::Matrix; \
using Eigen::MatrixBase; \
using Eigen::ei_random; \
using Eigen::ei_real; \
using Eigen::ei_imag; \
using Eigen::ei_conj; \
using Eigen::ei_abs; \
using Eigen::ei_abs2; \
using Eigen::ei_sqrt; \
using Eigen::ei_exp; \
using Eigen::ei_log; \
using Eigen::ei_sin; \
using Eigen::ei_cos;
#endif // EIGEN2SUPPORT_H

View File

@ -33,29 +33,23 @@
#include "src/Geometry/OrthoMethods.h"
#include "src/Geometry/EulerAngles.h"
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
#include "src/Geometry/Homogeneous.h"
#include "src/Geometry/RotationBase.h"
#include "src/Geometry/Rotation2D.h"
#include "src/Geometry/Quaternion.h"
#include "src/Geometry/AngleAxis.h"
#include "src/Geometry/Transform.h"
#include "src/Geometry/Translation.h"
#include "src/Geometry/Scaling.h"
#include "src/Geometry/Hyperplane.h"
#include "src/Geometry/ParametrizedLine.h"
#include "src/Geometry/AlignedBox.h"
#include "src/Geometry/Umeyama.h"
#include "src/Geometry/Homogeneous.h"
#include "src/Geometry/RotationBase.h"
#include "src/Geometry/Rotation2D.h"
#include "src/Geometry/Quaternion.h"
#include "src/Geometry/AngleAxis.h"
#include "src/Geometry/Transform.h"
#include "src/Geometry/Translation.h"
#include "src/Geometry/Scaling.h"
#include "src/Geometry/Hyperplane.h"
#include "src/Geometry/ParametrizedLine.h"
#include "src/Geometry/AlignedBox.h"
#include "src/Geometry/Umeyama.h"
// Use the SSE optimized version whenever possible. At the moment the
// SSE version doesn't compile when AVX is enabled
#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
#include "src/Geometry/arch/Geometry_SSE.h"
#endif
#endif
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/Geometry/All.h"
// Use the SSE optimized version whenever possible. At the moment the
// SSE version doesn't compile when AVX is enabled
#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
#include "src/Geometry/arch/Geometry_SSE.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"

View File

@ -33,10 +33,6 @@
#include "src/LU/arch/Inverse_SSE.h"
#endif
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/LU.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_LU_MODULE_H

View File

@ -1,32 +0,0 @@
#ifndef EIGEN_REGRESSION_MODULE_H
#define EIGEN_REGRESSION_MODULE_H
#ifndef EIGEN2_SUPPORT
#error LeastSquares is only available in Eigen2 support mode (define EIGEN2_SUPPORT)
#endif
// exclude from normal eigen3-only documentation
#ifdef EIGEN2_SUPPORT
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "Eigenvalues"
#include "Geometry"
/** \defgroup LeastSquares_Module LeastSquares module
* This module provides linear regression and related features.
*
* \code
* #include <Eigen/LeastSquares>
* \endcode
*/
#include "src/Eigen2Support/LeastSquares.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN2_SUPPORT
#endif // EIGEN_REGRESSION_MODULE_H

View File

@ -33,15 +33,7 @@
#include "src/QR/ColPivHouseholderQR_MKL.h"
#endif
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/QR.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#ifdef EIGEN2_SUPPORT
#include "Eigenvalues"
#endif
#endif // EIGEN_QR_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -27,10 +27,6 @@
#endif
#include "src/SVD/UpperBidiagonalization.h"
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/SVD.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SVD_MODULE_H

View File

@ -152,13 +152,6 @@ template<typename _MatrixType, int _UpLo> class LDLT
return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
}
#ifdef EIGEN2_SUPPORT
inline bool isPositiveDefinite() const
{
return isPositive();
}
#endif
/** \returns true if the matrix is negative (semidefinite) */
inline bool isNegative(void) const
{
@ -191,15 +184,6 @@ template<typename _MatrixType, int _UpLo> class LDLT
return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = this->solve(b);
return true;
}
#endif
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
@ -262,6 +246,7 @@ template<> struct ldlt_inplace<Lower>
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef typename TranspositionType::StorageIndexType IndexType;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
@ -274,24 +259,14 @@ template<> struct ldlt_inplace<Lower>
return true;
}
RealScalar cutoff(0), biggest_in_corner;
for (Index k = 0; k < size; ++k)
{
// Find largest diagonal element
Index index_of_biggest_in_corner;
biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += k;
if(k == 0)
{
// The biggest overall is the point of reference to which further diagonals
// are compared; if any diagonal is negligible compared
// to the largest overall, the algorithm bails.
cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
}
transpositions.coeffRef(k) = index_of_biggest_in_corner;
transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner);
if(k != index_of_biggest_in_corner)
{
// apply the transposition while taking care to consider only
@ -300,7 +275,7 @@ template<> struct ldlt_inplace<Lower>
mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
for(int i=k+1;i<index_of_biggest_in_corner;++i)
for(Index i=k+1;i<index_of_biggest_in_corner;++i)
{
Scalar tmp = mat.coeffRef(i,k);
mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
@ -321,16 +296,20 @@ template<> struct ldlt_inplace<Lower>
if(k>0)
{
temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
if(rs>0)
A21.noalias() -= A20 * temp.head(k);
}
if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
A21 /= mat.coeffRef(k,k);
// In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
// was smaller than the cutoff value. However, soince LDLT is not rank-revealing
// we should only make sure we do not introduce INF or NaN values.
// LAPACK also uses 0 as the cutoff value.
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
if((rs>0) && (abs(realAkk) > RealScalar(0)))
A21 /= realAkk;
if (sign == PositiveSemiDef) {
if (realAkk < 0) sign = Indefinite;
} else if (sign == NegativeSemiDef) {
@ -464,6 +443,7 @@ template<typename MatrixType, int _UpLo>
template<typename Derived>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename NumTraits<typename MatrixType::Scalar>::Real& sigma)
{
typedef typename TranspositionType::StorageIndexType IndexType;
const Index size = w.rows();
if (m_isInitialized)
{
@ -475,7 +455,7 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Deri
m_matrix.setZero();
m_transpositions.resize(size);
for (Index i = 0; i < size; i++)
m_transpositions.coeffRef(i) = i;
m_transpositions.coeffRef(i) = IndexType(i);
m_temporary.resize(size);
m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
m_isInitialized = true;
@ -508,11 +488,15 @@ struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
using std::abs;
EIGEN_USING_STD_MATH(max);
typedef typename LDLTType::MatrixType MatrixType;
typedef typename LDLTType::Scalar Scalar;
typedef typename LDLTType::RealScalar RealScalar;
const Diagonal<const MatrixType> vectorD = dec().vectorD();
RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(),
RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS
const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
// as motivated by LAPACK's xGELSS:
// RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
// diagonal element is not well justified and to numerical issues in some cases.
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
for (Index i = 0; i < vectorD.size(); ++i) {
if(abs(vectorD(i)) > tolerance)
dst.row(i) /= vectorD(i);
@ -570,7 +554,7 @@ MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
// L^* P
res = matrixU() * res;
// D(L^*P)
res = vectorD().asDiagonal() * res;
res = vectorD().real().asDiagonal() * res;
// L(DL^*P)
res = matrixL() * res;
// P^T (LDL^*P)

View File

@ -127,17 +127,6 @@ template<typename _MatrixType, int _UpLo> class LLT
return internal::solve_retval<LLT, Rhs>(*this, b.derived());
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = this->solve(b);
return true;
}
bool isPositiveDefinite() const { return true; }
#endif
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &bAndX) const;

View File

@ -144,24 +144,16 @@ class Array
}
#endif
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Array(Index dim)
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array)
eigen_assert(dim >= 0);
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Array(const T& x)
{
Base::_check_template_params();
Base::template _init1<T>(x);
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1)
@ -170,11 +162,23 @@ class Array
this->template _init2<T0,T1>(val0, val1);
}
#else
/** constructs an uninitialized matrix with \a rows rows and \a cols columns.
/** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */
EIGEN_DEVICE_FUNC explicit Array(const Scalar *data);
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* This is useful for dynamic-size matrices. For fixed-size matrices,
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Array() instead.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Array(Index dim);
/** constructs an initialized 1x1 Array with the given coefficient */
Array(const Scalar& value);
/** constructs an uninitialized array with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size arrays. For fixed-size arrays,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead. */
* Array() instead. */
Array(Index rows, Index cols);
/** constructs an initialized 2D vector with given coefficients */
Array(const Scalar& val0, const Scalar& val1);
@ -202,8 +206,6 @@ class Array
m_storage.data()[3] = val3;
}
EIGEN_DEVICE_FUNC explicit Array(const Scalar *data);
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC

View File

@ -202,6 +202,7 @@ EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(asin, Asin)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(cos, Cos)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(acos, Acos)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(tan, Tan)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(atan, Atan)
//EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(exp, Exp)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(log, Ln)

View File

@ -506,17 +506,6 @@ template<typename Derived> class DenseBase
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#ifdef EIGEN2_SUPPORT
Block<Derived> corner(CornerType type, Index cRows, Index cCols);
const Block<Derived> corner(CornerType type, Index cRows, Index cCols) const;
template<int CRows, int CCols>
Block<Derived, CRows, CCols> corner(CornerType type);
template<int CRows, int CCols>
const Block<Derived, CRows, CCols> corner(CornerType type) const;
#endif // EIGEN2_SUPPORT
// disable the use of evalTo for dense objects with a nice compilation error
template<typename Dest>

View File

@ -156,10 +156,8 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
EIGEN_STRONG_INLINE CoeffReturnType
operator[](Index index) const
{
#ifndef EIGEN2_SUPPORT
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
#endif
eigen_assert(index >= 0 && index < size());
return derived().coeff(index);
}
@ -388,10 +386,8 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
EIGEN_STRONG_INLINE Scalar&
operator[](Index index)
{
#ifndef EIGEN2_SUPPORT
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
#endif
eigen_assert(index >= 0 && index < size());
return derived().coeffRef(index);
}

View File

@ -95,21 +95,6 @@ class DiagonalBase : public EigenBase<Derived>
{
return other.diagonal() * scalar;
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
bool isApprox(const DiagonalBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
{
return diagonal().isApprox(other.diagonal(), precision);
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
{
return toDenseMatrix().isApprox(other, precision);
}
#endif
};
template<typename Derived>

View File

@ -76,34 +76,6 @@ MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
}
#ifdef EIGEN2_SUPPORT
/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable
* (conjugating the second variable). Of course this only makes a difference in the complex case.
*
* This method is only available in EIGEN2_SUPPORT mode.
*
* \only_for_vectors
*
* \sa dot()
*/
template<typename Derived>
template<typename OtherDerived>
typename internal::traits<Derived>::Scalar
MatrixBase<Derived>::eigen2_dot(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(size() == other.size());
return internal::dot_nocheck<OtherDerived,Derived>::run(other,*this);
}
#endif
//---------- implementation of L2 norm and related functions ----------
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.

View File

@ -445,7 +445,7 @@ template<> struct gemv_selector<OnTheRight,ColMajor,true>
if(!evalToDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = dest.size();
Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if(!alphaIsCompatible)
@ -510,7 +510,7 @@ template<> struct gemv_selector<OnTheRight,RowMajor,true>
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = actualRhs.size();
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;

8
Eigen/src/Core/GenericPacketMath.h Executable file → Normal file
View File

@ -234,10 +234,10 @@ template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstore(
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from)
{ (*to) = from; }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, int /*stride*/)
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, DenseIndex /*stride*/)
{ return ploadu<Packet>(from); }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, int /*stride*/)
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, DenseIndex /*stride*/)
{ pstore(to, from); }
/** \internal tries to do cache prefetching of \a addr */
@ -319,6 +319,10 @@ Packet pasin(const Packet& a) { using std::asin; return asin(a); }
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pacos(const Packet& a) { using std::acos; return acos(a); }
/** \internal \returns the atan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet patan(const Packet& a) { using std::atan; return atan(a); }
/** \internal \returns the exp of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexp(const Packet& a) { using std::exp; return exp(a); }

View File

@ -45,6 +45,7 @@ namespace Eigen
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atan,scalar_atan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op)

View File

@ -110,14 +110,9 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
EIGEN_DENSE_PUBLIC_INTERFACE(Map)
typedef typename Base::PointerType PointerType;
#if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API
typedef const Scalar* PointerArgType;
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast<PointerType>(ptr); }
#else
typedef PointerType PointerArgType;
EIGEN_DEVICE_FUNC
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; }
#endif
EIGEN_DEVICE_FUNC
inline Index innerStride() const
@ -179,19 +174,6 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
StrideType m_stride;
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
inline Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
::Array(const Scalar *data)
{
this->_set_noalias(Eigen::Map<const Array>(data));
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
inline Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
::Matrix(const Scalar *data)
{
this->_set_noalias(Eigen::Map<const Matrix>(data));
}
} // end namespace Eigen

View File

@ -232,24 +232,17 @@ class Matrix
}
#endif
/** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
#ifndef EIGEN_PARSED_BY_DOXYGEN
// This constructor is for both 1x1 matrices and dynamic vectors
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Matrix(Index dim)
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
EIGEN_STRONG_INLINE explicit Matrix(const T& x)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
eigen_assert(dim >= 0);
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
Base::template _init1<T>(x);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
@ -258,13 +251,40 @@ class Matrix
Base::template _init2<T0,T1>(x, y);
}
#else
/** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */
EIGEN_DEVICE_FUNC
explicit Matrix(const Scalar *data);
/** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* This is useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead.
*
* \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance,
* calling Matrix<double,1,1>(1) will call the initialization constructor: Matrix(const Scalar&).
* For fixed-size \c 1x1 matrices it is thefore recommended to use the default
* constructor Matrix() instead, especilly when using one of the non standard
* \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
*/
EIGEN_STRONG_INLINE explicit Matrix(Index dim);
/** \brief Constructs an initialized 1x1 matrix with the given coefficient */
Matrix(const Scalar& x);
/** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead. */
* Matrix() instead.
*
* \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance,
* calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y).
* For fixed-size \c 1x2 or \c 2x1 vectors it is thefore recommended to use the default
* constructor Matrix() instead, especilly when using one of the non standard
* \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
*/
EIGEN_DEVICE_FUNC
Matrix(Index rows, Index cols);
/** \brief Constructs an initialized 2D vector with given coefficients */
Matrix(const Scalar& x, const Scalar& y);
#endif
@ -291,8 +311,6 @@ class Matrix
m_storage.data()[3] = w;
}
EIGEN_DEVICE_FUNC
explicit Matrix(const Scalar *data);
/** \brief Constructor copying the value of the expression \a other */
template<typename OtherDerived>
@ -362,13 +380,6 @@ class Matrix
EIGEN_DEVICE_FUNC
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
explicit Matrix(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
#endif
// allow to extend Matrix outside Eigen
#ifdef EIGEN_MATRIX_PLUGIN
#include EIGEN_MATRIX_PLUGIN

View File

@ -221,11 +221,6 @@ template<typename Derived> class MatrixBase
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
dot(const MatrixBase<OtherDerived>& other) const;
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
Scalar eigen2_dot(const MatrixBase<OtherDerived>& other) const;
#endif
EIGEN_DEVICE_FUNC RealScalar squaredNorm() const;
EIGEN_DEVICE_FUNC RealScalar norm() const;
RealScalar stableNorm() const;
@ -269,17 +264,6 @@ template<typename Derived> class MatrixBase
typename ConstDiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index) const;
#endif
#ifdef EIGEN2_SUPPORT
template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type part();
template<unsigned int Mode> const typename internal::eigen2_part_return_type<Derived, Mode>::type part() const;
// huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead
// of an integer constant. Solution: overload the part() method template wrt template parameters list.
template<template<typename T, int N> class U>
const DiagonalWrapper<ConstDiagonalReturnType> part() const
{ return diagonal().asDiagonal(); }
#endif // EIGEN2_SUPPORT
template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; };
template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; };
@ -373,24 +357,7 @@ template<typename Derived> class MatrixBase
EIGEN_DEVICE_FUNC const FullPivLU<PlainObject> fullPivLu() const;
EIGEN_DEVICE_FUNC const PartialPivLU<PlainObject> partialPivLu() const;
#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
const LU<PlainObject> lu() const;
#endif
#ifdef EIGEN2_SUPPORT
const LU<PlainObject> eigen2_lu() const;
#endif
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
const PartialPivLU<PlainObject> lu() const;
#endif
#ifdef EIGEN2_SUPPORT
template<typename ResultType>
void computeInverse(MatrixBase<ResultType> *result) const {
*result = this->inverse();
}
#endif
EIGEN_DEVICE_FUNC
const internal::inverse_impl<Derived> inverse() const;
@ -420,10 +387,6 @@ template<typename Derived> class MatrixBase
const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
#ifdef EIGEN2_SUPPORT
const QR<PlainObject> qr() const;
#endif
EigenvaluesReturnType eigenvalues() const;
RealScalar operatorNorm() const;
@ -431,10 +394,6 @@ template<typename Derived> class MatrixBase
JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
#ifdef EIGEN2_SUPPORT
SVD<PlainObject> svd() const;
#endif
/////////// Geometry module ///////////
#ifndef EIGEN_PARSED_BY_DOXYGEN
@ -458,13 +417,11 @@ template<typename Derived> class MatrixBase
Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const;
// put this as separate enum value to work around possible GCC 4.3 bug (?)
enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal };
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType;
HomogeneousReturnType homogeneous() const;
#endif
enum {
SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
@ -513,41 +470,6 @@ template<typename Derived> class MatrixBase
const MatrixPowerReturnValue<Derived> pow(const RealScalar& p) const;
const MatrixComplexPowerReturnValue<Derived> pow(const std::complex<RealScalar>& p) const;
#ifdef EIGEN2_SUPPORT
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other);
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other);
/** \deprecated because .lazy() is deprecated
* Overloaded for cache friendly product evaluation */
template<typename OtherDerived>
Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other)
{ return lazyAssign(other._expression()); }
template<unsigned int Added>
const Flagged<Derived, Added, 0> marked() const;
const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const;
inline const Cwise<Derived> cwise() const;
inline Cwise<Derived> cwise();
VectorBlock<Derived> start(Index size);
const VectorBlock<const Derived> start(Index size) const;
VectorBlock<Derived> end(Index size);
const VectorBlock<const Derived> end(Index size) const;
template<int Size> VectorBlock<Derived,Size> start();
template<int Size> const VectorBlock<const Derived,Size> start() const;
template<int Size> VectorBlock<Derived,Size> end();
template<int Size> const VectorBlock<const Derived,Size> end() const;
Minor<Derived> minor(Index row, Index col);
const Minor<Derived> minor(Index row, Index col) const;
#endif
protected:
EIGEN_DEVICE_FUNC MatrixBase() : Base() {}

View File

@ -85,13 +85,6 @@ template<typename T> struct GenericNumTraits
}
static inline T highest() { return (std::numeric_limits<T>::max)(); }
static inline T lowest() { return IsInteger ? (std::numeric_limits<T>::min)() : (-(std::numeric_limits<T>::max)()); }
#ifdef EIGEN2_SUPPORT
enum {
HasFloatingPoint = !IsInteger
};
typedef NonInteger FloatingPoint;
#endif
};
template<typename T> struct NumTraits : GenericNumTraits<T>

View File

@ -66,11 +66,11 @@ class PermutationBase : public EigenBase<Derived>
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
};
typedef typename Traits::Scalar Scalar;
typedef typename Traits::StorageIndexType StorageIndexType;
typedef typename Traits::Index Index;
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
typedef Matrix<StorageIndexType,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
DenseMatrixType;
typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index>
typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,StorageIndexType>
PlainPermutationType;
using Base::derived;
#endif
@ -147,7 +147,7 @@ class PermutationBase : public EigenBase<Derived>
/** Sets *this to be the identity permutation matrix */
void setIdentity()
{
for(Index i = 0; i < size(); ++i)
for(StorageIndexType i = 0; i < size(); ++i)
indices().coeffRef(i) = i;
}
@ -173,8 +173,8 @@ class PermutationBase : public EigenBase<Derived>
eigen_assert(i>=0 && j>=0 && i<size() && j<size());
for(Index k = 0; k < size(); ++k)
{
if(indices().coeff(k) == i) indices().coeffRef(k) = j;
else if(indices().coeff(k) == j) indices().coeffRef(k) = i;
if(indices().coeff(k) == i) indices().coeffRef(k) = StorageIndexType(j);
else if(indices().coeff(k) == j) indices().coeffRef(k) = StorageIndexType(i);
}
return derived();
}
@ -262,7 +262,7 @@ class PermutationBase : public EigenBase<Derived>
*
* \param SizeAtCompileTime the number of rows/cols, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
* \param IndexType the interger type of the indices
* \param StorageIndexType the integer type of the indices
*
* This class represents a permutation matrix, internally stored as a vector of integers.
*
@ -270,17 +270,18 @@ class PermutationBase : public EigenBase<Derived>
*/
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
: traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType> >
: traits<Matrix<_StorageIndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef IndexType Index;
typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef Matrix<_StorageIndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef typename IndicesType::Index Index;
typedef _StorageIndexType StorageIndexType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType>
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType> >
{
typedef PermutationBase<PermutationMatrix> Base;
typedef internal::traits<PermutationMatrix> Traits;
@ -288,6 +289,8 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
typedef typename Traits::StorageIndexType StorageIndexType;
typedef typename Traits::Index Index;
#endif
inline PermutationMatrix()
@ -295,7 +298,7 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
/** Constructs an uninitialized permutation matrix of given size.
*/
inline PermutationMatrix(int size) : m_indices(size)
inline PermutationMatrix(Index size) : m_indices(size)
{}
/** Copy constructor. */
@ -384,18 +387,19 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
: traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType, int _PacketAccess>
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType>,_PacketAccess> >
: traits<Matrix<_StorageIndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef IndexType Index;
typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
typedef Map<const Matrix<_StorageIndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
typedef typename IndicesType::Index Index;
typedef _StorageIndexType StorageIndexType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess>
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType, int _PacketAccess>
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType>,_PacketAccess>
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType>,_PacketAccess> >
{
typedef PermutationBase<Map> Base;
typedef internal::traits<Map> Traits;
@ -403,14 +407,15 @@ class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
typedef typename IndicesType::Scalar StorageIndexType;
typedef typename IndicesType::Index Index;
#endif
inline Map(const Index* indicesPtr)
inline Map(const StorageIndexType* indicesPtr)
: m_indices(indicesPtr)
{}
inline Map(const Index* indicesPtr, Index size)
inline Map(const StorageIndexType* indicesPtr, Index size)
: m_indices(indicesPtr,size)
{}
@ -466,7 +471,8 @@ struct traits<PermutationWrapper<_IndicesType> >
{
typedef PermutationStorage StorageKind;
typedef typename _IndicesType::Scalar Scalar;
typedef typename _IndicesType::Scalar Index;
typedef typename _IndicesType::Scalar StorageIndexType;
typedef typename _IndicesType::Index Index;
typedef _IndicesType IndicesType;
enum {
RowsAtCompileTime = _IndicesType::SizeAtCompileTime,

View File

@ -681,6 +681,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
resize(nbRows,nbCols);
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init2(const Scalar& val0, const Scalar& val1, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
@ -690,6 +691,82 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
m_storage.data()[1] = val1;
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init2(const Index& val0, const Index& val1,
typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
&& (internal::is_same<T0,Index>::value)
&& (internal::is_same<T1,Index>::value)
&& Base::SizeAtCompileTime==2,T1>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
m_storage.data()[0] = Scalar(val0);
m_storage.data()[1] = Scalar(val1);
}
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if<Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value,T>::type* = 0)
{
// NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument.
const bool is_integer = NumTraits<T>::IsInteger;
EIGEN_STATIC_ASSERT(is_integer,
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
resize(size);
}
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
m_storage.data()[0] = val0;
}
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Index& val0,
typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
&& (internal::is_same<Index,T>::value)
&& Base::SizeAtCompileTime==1
&& internal::is_convertible<T, Scalar>::value,T*>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
m_storage.data()[0] = Scalar(val0);
}
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar* data){
this->_set_noalias(ConstMapType(data));
}
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other){
this->_set_noalias(other);
}
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other){
this->derived() = other;
}
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const ReturnByValue<OtherDerived>& other)
{
resize(other.rows(), other.cols());
other.evalTo(this->derived());
}
template<typename T, typename OtherDerived, int ColsAtCompileTime>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
this->derived() = r;
}
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
friend struct internal::matrix_swap_impl;

View File

@ -131,17 +131,13 @@ class ProductBase : public MatrixBase<Derived>
const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
// restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isnt a Lvalue expression
// restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isn't an Lvalue expression
typename Base::CoeffReturnType coeff(Index row, Index col) const
{
#ifdef EIGEN2_SUPPORT
return lhs().row(row).cwiseProduct(rhs().col(col).transpose()).sum();
#else
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
Matrix<Scalar,1,1> result = *this;
return result.coeff(row,col);
#endif
}
typename Base::CoeffReturnType coeff(Index i) const

View File

@ -19,17 +19,17 @@ template<typename PlainObjectType, int Options = 0,
/** \class Ref
* \ingroup Core_Module
*
* \brief A matrix or vector expression mapping an existing expressions
* \brief A matrix or vector expression mapping an existing expression
*
* \tparam PlainObjectType the equivalent matrix type of the mapped data
* \tparam Options specifies whether the pointer is \c #Aligned, or \c #Unaligned.
* The default is \c #Unaligned.
* \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1),
* but accept a variable outer stride (leading dimension).
* but accepts a variable outer stride (leading dimension).
* This can be overridden by specifying strides.
* The type passed here must be a specialization of the Stride template, see examples below.
*
* This class permits to write non template functions taking Eigen's object as parameters while limiting the number of copies.
* This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the number of copies.
* A Ref<> object can represent either a const expression or a l-value:
* \code
* // in-out argument:
@ -39,10 +39,10 @@ template<typename PlainObjectType, int Options = 0,
* void foo2(const Ref<const VectorXf>& x);
* \endcode
*
* In the in-out case, the input argument must satisfies the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
* In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
* By default, a Ref<VectorXf> can reference any dense vector expression of float having a contiguous memory layout.
* Likewise, a Ref<MatrixXf> can reference any column major dense matrix expression of float whose column's elements are contiguously stored with
* the possibility to have a constant space inbetween each column, i.e.: the inner stride mmust be equal to 1, but the outer-stride (or leading dimension),
* Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float whose column's elements are contiguously stored with
* the possibility to have a constant space in-between each column, i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension)
* can be greater than the number of rows.
*
* In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function.
@ -58,15 +58,15 @@ template<typename PlainObjectType, int Options = 0,
* foo2(A.col().segment(2,4)); // No temporary
* \endcode
*
* The range of inputs that can be referenced without temporary can be enlarged using the last two template parameter.
* The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters.
* Here is an example accepting an innerstride!=1:
* \code
* // in-out argument:
* void foo3(Ref<VectorXf,0,InnerStride<> > x);
* foo3(A.row()); // OK
* \endcode
* The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involved more
* expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overloads internally calling a
* The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involve more
* expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overload internally calling a
* template function, e.g.:
* \code
* // in the .h:

View File

@ -178,31 +178,6 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
EIGEN_DEVICE_FUNC
RealScalar operatorNorm() const;
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
SelfAdjointView& operator=(const MatrixBase<OtherDerived>& other)
{
enum {
OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
};
m_matrix.const_cast_derived().template triangularView<UpLo>() = other;
m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.adjoint();
return *this;
}
template<typename OtherMatrixType, unsigned int OtherMode>
EIGEN_DEVICE_FUNC
SelfAdjointView& operator=(const TriangularView<OtherMatrixType, OtherMode>& other)
{
enum {
OtherPart = UpLo == Upper ? StrictlyLower : StrictlyUpper
};
m_matrix.const_cast_derived().template triangularView<UpLo>() = other.toDenseMatrix();
m_matrix.const_cast_derived().template triangularView<OtherPart>() = other.toDenseMatrix().adjoint();
return *this;
}
#endif
protected:
MatrixTypeNested m_matrix;
};

View File

@ -53,7 +53,8 @@ class TranspositionsBase
public:
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
typedef typename IndicesType::Scalar StorageIndexType;
typedef typename IndicesType::Index Index;
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
@ -81,17 +82,17 @@ class TranspositionsBase
inline Index size() const { return indices().size(); }
/** Direct access to the underlying index vector */
inline const Index& coeff(Index i) const { return indices().coeff(i); }
inline const StorageIndexType& coeff(Index i) const { return indices().coeff(i); }
/** Direct access to the underlying index vector */
inline Index& coeffRef(Index i) { return indices().coeffRef(i); }
inline StorageIndexType& coeffRef(Index i) { return indices().coeffRef(i); }
/** Direct access to the underlying index vector */
inline const Index& operator()(Index i) const { return indices()(i); }
inline const StorageIndexType& operator()(Index i) const { return indices()(i); }
/** Direct access to the underlying index vector */
inline Index& operator()(Index i) { return indices()(i); }
inline StorageIndexType& operator()(Index i) { return indices()(i); }
/** Direct access to the underlying index vector */
inline const Index& operator[](Index i) const { return indices()(i); }
inline const StorageIndexType& operator[](Index i) const { return indices()(i); }
/** Direct access to the underlying index vector */
inline Index& operator[](Index i) { return indices()(i); }
inline StorageIndexType& operator[](Index i) { return indices()(i); }
/** const version of indices(). */
const IndicesType& indices() const { return derived().indices(); }
@ -99,7 +100,7 @@ class TranspositionsBase
IndicesType& indices() { return derived().indices(); }
/** Resizes to given size. */
inline void resize(int newSize)
inline void resize(Index newSize)
{
indices().resize(newSize);
}
@ -107,7 +108,7 @@ class TranspositionsBase
/** Sets \c *this to represents an identity transformation */
void setIdentity()
{
for(int i = 0; i < indices().size(); ++i)
for(StorageIndexType i = 0; i < indices().size(); ++i)
coeffRef(i) = i;
}
@ -144,23 +145,26 @@ class TranspositionsBase
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType>
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexType> >
{
typedef IndexType Index;
typedef Matrix<Index, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef Matrix<_StorageIndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef typename IndicesType::Index Index;
typedef _StorageIndexType StorageIndexType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType>
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexType> >
{
typedef internal::traits<Transpositions> Traits;
public:
typedef TranspositionsBase<Transpositions> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
typedef typename IndicesType::Scalar StorageIndexType;
typedef typename IndicesType::Index Index;
inline Transpositions() {}
@ -215,30 +219,32 @@ class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTim
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,_PacketAccess> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType, int _PacketAccess>
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexType>,_PacketAccess> >
{
typedef IndexType Index;
typedef Map<const Matrix<Index,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
typedef Map<const Matrix<_StorageIndexType,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
typedef typename IndicesType::Index Index;
typedef _StorageIndexType StorageIndexType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int PacketAccess>
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess>
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,IndexType>,PacketAccess> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndexType, int PacketAccess>
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexType>,PacketAccess>
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexType>,PacketAccess> >
{
typedef internal::traits<Map> Traits;
public:
typedef TranspositionsBase<Map> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
typedef typename IndicesType::Scalar StorageIndexType;
typedef typename IndicesType::Index Index;
inline Map(const Index* indicesPtr)
inline Map(const StorageIndexType* indicesPtr)
: m_indices(indicesPtr)
{}
inline Map(const Index* indicesPtr, Index size)
inline Map(const StorageIndexType* indicesPtr, Index size)
: m_indices(indicesPtr,size)
{}
@ -275,7 +281,8 @@ namespace internal {
template<typename _IndicesType>
struct traits<TranspositionsWrapper<_IndicesType> >
{
typedef typename _IndicesType::Scalar Index;
typedef typename _IndicesType::Scalar StorageIndexType;
typedef typename _IndicesType::Index Index;
typedef _IndicesType IndicesType;
};
}
@ -289,7 +296,8 @@ class TranspositionsWrapper
typedef TranspositionsBase<TranspositionsWrapper> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
typedef typename IndicesType::Scalar StorageIndexType;
typedef typename IndicesType::Index Index;
inline TranspositionsWrapper(IndicesType& a_indices)
: m_indices(a_indices)
@ -363,24 +371,25 @@ struct transposition_matrix_product_retval
{
typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
typedef typename TranspositionType::Index Index;
typedef typename TranspositionType::StorageIndexType StorageIndexType;
transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix)
: m_transpositions(tr), m_matrix(matrix)
{}
inline int rows() const { return m_matrix.rows(); }
inline int cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
template<typename Dest> inline void evalTo(Dest& dst) const
{
const int size = m_transpositions.size();
Index j = 0;
const Index size = m_transpositions.size();
StorageIndexType j = 0;
if(!(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)))
dst = m_matrix;
for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
if((j=m_transpositions.coeff(k))!=k)
for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
if(Index(j=m_transpositions.coeff(k))!=k)
{
if(Side==OnTheLeft)
dst.row(k).swap(dst.row(j));

View File

@ -323,54 +323,25 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
/** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
TriangularProduct<Mode,true,MatrixType,false,OtherDerived, OtherDerived::IsVectorAtCompileTime>
TriangularProduct<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
return TriangularProduct
<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
(m_matrix, rhs.derived());
}
/** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC
TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
TriangularProduct<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
{
return TriangularProduct
<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
(lhs.derived(),rhs.m_matrix);
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
struct eigen2_product_return_type
{
typedef typename TriangularView<MatrixType,Mode>::DenseMatrixType DenseMatrixType;
typedef typename OtherDerived::PlainObject::DenseType OtherPlainObject;
typedef typename ProductReturnType<DenseMatrixType, OtherPlainObject>::Type ProdRetType;
typedef typename ProdRetType::PlainObject type;
};
template<typename OtherDerived>
const typename eigen2_product_return_type<OtherDerived>::type
operator*(const EigenBase<OtherDerived>& rhs) const
{
typename OtherDerived::PlainObject::DenseType rhsPlainObject;
rhs.evalTo(rhsPlainObject);
return this->toDenseMatrix() * rhsPlainObject;
}
template<typename OtherMatrixType>
bool isApprox(const TriangularView<OtherMatrixType, Mode>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
{
return this->toDenseMatrix().isApprox(other.toDenseMatrix(), precision);
}
template<typename OtherDerived>
bool isApprox(const MatrixBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const
{
return this->toDenseMatrix().isApprox(other, precision);
}
#endif // EIGEN2_SUPPORT
template<int Side, typename Other>
EIGEN_DEVICE_FUNC
inline const internal::triangular_solve_retval<Side,TriangularView, Other>
@ -780,41 +751,6 @@ void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
* Implementation of MatrixBase methods
***************************************************************************/
#ifdef EIGEN2_SUPPORT
// implementation of part<>(), including the SelfAdjoint case.
namespace internal {
template<typename MatrixType, unsigned int Mode>
struct eigen2_part_return_type
{
typedef TriangularView<MatrixType, Mode> type;
};
template<typename MatrixType>
struct eigen2_part_return_type<MatrixType, SelfAdjoint>
{
typedef SelfAdjointView<MatrixType, Upper> type;
};
}
/** \deprecated use MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
const typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part() const
{
return derived();
}
/** \deprecated use MatrixBase::triangularView() */
template<typename Derived>
template<unsigned int Mode>
typename internal::eigen2_part_return_type<Derived, Mode>::type MatrixBase<Derived>::part()
{
return derived();
}
#endif
/**
* \returns an expression of a triangular view extracted from the current matrix
*

View File

@ -560,9 +560,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
/////////// Geometry module ///////////
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
Homogeneous<ExpressionType,Direction> homogeneous() const;
#endif
typedef typename ExpressionType::PlainObject CrossReturnType;
template<typename OtherDerived>

View File

@ -194,7 +194,7 @@ DenseBase<Derived>::minCoeff(IndexType* index) const
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
internal::min_coeff_visitor<Derived> minVisitor;
this->visit(minVisitor);
*index = (RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row;
*index = IndexType((RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row);
return minVisitor.res;
}

View File

@ -92,7 +92,7 @@ template<> EIGEN_STRONG_INLINE Packet4cf ploaddup<Packet4cf>(const std::complex<
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); }
template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather<std::complex<float>, Packet4cf>(const std::complex<float>* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather<std::complex<float>, Packet4cf>(const std::complex<float>* from, DenseIndex stride)
{
return Packet4cf(_mm256_set_ps(std::imag(from[3*stride]), std::real(from[3*stride]),
std::imag(from[2*stride]), std::real(from[2*stride]),
@ -100,7 +100,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather<std::complex<float>, Packe
std::imag(from[0*stride]), std::real(from[0*stride])));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet4cf>(std::complex<float>* to, const Packet4cf& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet4cf>(std::complex<float>* to, const Packet4cf& from, DenseIndex stride)
{
__m128 low = _mm256_extractf128_ps(from.v, 0);
to[stride*0] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 0)),
@ -310,13 +310,13 @@ template<> EIGEN_STRONG_INLINE Packet2cd ploaddup<Packet2cd>(const std::complex<
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet2cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet2cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
template<> EIGEN_DEVICE_FUNC inline Packet2cd pgather<std::complex<double>, Packet2cd>(const std::complex<double>* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet2cd pgather<std::complex<double>, Packet2cd>(const std::complex<double>* from, DenseIndex stride)
{
return Packet2cd(_mm256_set_pd(std::imag(from[1*stride]), std::real(from[1*stride]),
std::imag(from[0*stride]), std::real(from[0*stride])));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet2cd>(std::complex<double>* to, const Packet2cd& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet2cd>(std::complex<double>* to, const Packet2cd& from, DenseIndex stride)
{
__m128d low = _mm256_extractf128_pd(from.v, 0);
to[stride*0] = std::complex<double>(_mm_cvtsd_f64(low), _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1)));

View File

@ -226,17 +226,17 @@ template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet8i&
// NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available
// NOTE: for the record the following seems to be slower: return _mm256_i32gather_ps(from, _mm256_set1_epi32(stride), 4);
template<> EIGEN_DEVICE_FUNC inline Packet8f pgather<float, Packet8f>(const float* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet8f pgather<float, Packet8f>(const float* from, DenseIndex stride)
{
return _mm256_set_ps(from[7*stride], from[6*stride], from[5*stride], from[4*stride],
from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const double* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet4d pgather<double, Packet4d>(const double* from, DenseIndex stride)
{
return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, const Packet8f& from, DenseIndex stride)
{
__m128 low = _mm256_extractf128_ps(from, 0);
to[stride*0] = _mm_cvtss_f32(low);
@ -250,7 +250,7 @@ template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet8f>(float* to, co
to[stride*6] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 2));
to[stride*7] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to, const Packet4d& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet4d>(double* to, const Packet4d& from, DenseIndex stride)
{
__m128d low = _mm256_extractf128_pd(from, 0);
to[stride*0] = _mm_cvtsd_f64(low);

View File

@ -16,13 +16,14 @@ namespace internal {
static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_ZERO_);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
static Packet16uc p16uc_COMPLEX_RE = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
static Packet16uc p16uc_COMPLEX_IM = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
static Packet16uc p16uc_COMPLEX_IM = vec_sld(p16uc_DUPLICATE, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
static Packet16uc p16uc_COMPLEX_REV = vec_sld(p16uc_REVERSE, p16uc_REVERSE, 8);//{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
static Packet16uc p16uc_COMPLEX_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8);//{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET_HI = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 1));//{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET_LO = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 2), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 3));//{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
static Packet16uc p16uc_COMPLEX_TRANSPOSE_0 = { 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
static Packet16uc p16uc_COMPLEX_TRANSPOSE_1 = { 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};
static Packet16uc p16uc_PSET_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_COMPLEX_RE, (Packet4ui)p16uc_COMPLEX_IM);//{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_COMPLEX_RE, (Packet4ui)p16uc_COMPLEX_IM);//{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
static Packet16uc p16uc_COMPLEX_MASK16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8);//{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16};
static Packet16uc p16uc_COMPLEX_TRANSPOSE_0 = vec_add(p16uc_PSET_HI, p16uc_COMPLEX_MASK16);//{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
static Packet16uc p16uc_COMPLEX_TRANSPOSE_1 = vec_add(p16uc_PSET_LO, p16uc_COMPLEX_MASK16);//{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};
//---------- float ----------
struct Packet2cf
@ -68,14 +69,14 @@ template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<flo
return res;
}
template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, DenseIndex stride)
{
std::complex<float> EIGEN_ALIGN16 af[2];
af[0] = from[0*stride];
af[1] = from[1*stride];
return Packet2cf(vec_ld(0, (const float*)af));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, DenseIndex stride)
{
std::complex<float> EIGEN_ALIGN16 af[2];
vec_st(from.v, 0, (float*)af);

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Konstantinos Margaritis <markos@codex.gr>
// Copyright (C) 2008-2014 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -62,17 +62,17 @@ typedef __vector unsigned char Packet16uc;
// Define global static constants:
static Packet4f p4f_COUNTDOWN = { 0.0, 1.0, 2.0, 3.0 };
static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 };
static Packet16uc p16uc_REVERSE = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0);
static Packet16uc p16uc_DUPLICATE = {0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7};
static Packet16uc p16uc_REVERSE = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0); //{ 0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15}
static Packet16uc p16uc_DUPLICATE = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7};
static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1);
static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0);
static Packet4f p4f_ZERO_ = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1);
static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0); //{ 0.0, 0.0, 0.0, 0.0}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1); //{ 1, 1, 1, 1}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16); //{ -16, -16, -16, -16}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1); //{ -1, -1, -1, -1}
static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0); //{ 1.0, 1.0, 1.0, 1.0}
static Packet4f p4f_ZERO_ = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1); //{ 0x80000000, 0x80000000, 0x80000000, 0x80000000}
template<> struct packet_traits<float> : default_packet_traits
{
@ -82,8 +82,10 @@ template<> struct packet_traits<float> : default_packet_traits
Vectorizable = 1,
AlignedOnScalar = 1,
size=4,
HasHalfPacket=0,
// FIXME check the Has*
HasDiv = 1,
HasSin = 0,
HasCos = 0,
HasLog = 0,
@ -190,7 +192,7 @@ pbroadcast4<Packet4i>(const int *a,
a3 = vec_splat(a3, 3);
}
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, DenseIndex stride)
{
float EIGEN_ALIGN16 af[4];
af[0] = from[0*stride];
@ -199,7 +201,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const floa
af[3] = from[3*stride];
return vec_ld(0, af);
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, DenseIndex stride)
{
int EIGEN_ALIGN16 ai[4];
ai[0] = from[0*stride];
@ -208,7 +210,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* f
ai[3] = from[3*stride];
return vec_ld(0, ai);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, DenseIndex stride)
{
float EIGEN_ALIGN16 af[4];
vec_st(from, 0, af);
@ -217,7 +219,7 @@ template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, co
to[2*stride] = af[2];
to[3*stride] = af[3];
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, DenseIndex stride)
{
int EIGEN_ALIGN16 ai[4];
vec_st(from, 0, ai);

View File

@ -111,7 +111,7 @@ template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, DenseIndex stride)
{
Packet4f res;
res = vsetq_lane_f32(std::real(from[0*stride]), res, 0);
@ -121,7 +121,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packe
return Packet2cf(res);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, DenseIndex stride)
{
to[stride*0] = std::complex<float>(vgetq_lane_f32(from.v, 0), vgetq_lane_f32(from.v, 1));
to[stride*1] = std::complex<float>(vgetq_lane_f32(from.v, 2), vgetq_lane_f32(from.v, 3));

View File

@ -222,7 +222,7 @@ template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& f
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, DenseIndex stride)
{
Packet4f res;
res = vsetq_lane_f32(from[0*stride], res, 0);
@ -231,7 +231,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const floa
res = vsetq_lane_f32(from[3*stride], res, 3);
return res;
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, DenseIndex stride)
{
Packet4i res;
res = vsetq_lane_s32(from[0*stride], res, 0);
@ -241,14 +241,14 @@ template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* f
return res;
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, DenseIndex stride)
{
to[stride*0] = vgetq_lane_f32(from, 0);
to[stride*1] = vgetq_lane_f32(from, 1);
to[stride*2] = vgetq_lane_f32(from, 2);
to[stride*3] = vgetq_lane_f32(from, 3);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, DenseIndex stride)
{
to[stride*0] = vgetq_lane_s32(from, 0);
to[stride*1] = vgetq_lane_s32(from, 1);

View File

@ -115,13 +115,13 @@ template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<f
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), Packet4f(from.v)); }
template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, DenseIndex stride)
{
return Packet2cf(_mm_set_ps(std::imag(from[1*stride]), std::real(from[1*stride]),
std::imag(from[0*stride]), std::real(from[0*stride])));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, DenseIndex stride)
{
to[stride*0] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 0)),
_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 1)));

View File

@ -387,32 +387,32 @@ template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d&
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), Packet2d(_mm_castps_pd(from))); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), Packet2d(_mm_castsi128_pd(from))); }
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, DenseIndex stride)
{
return _mm_set_ps(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, DenseIndex stride)
{
return _mm_set_pd(from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, int stride)
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, DenseIndex stride)
{
return _mm_set_epi32(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, DenseIndex stride)
{
to[stride*0] = _mm_cvtss_f32(from);
to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 1));
to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 2));
to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 3));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, DenseIndex stride)
{
to[stride*0] = _mm_cvtsd_f64(from);
to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(from, from, 1));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, int stride)
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, DenseIndex stride)
{
to[stride*0] = _mm_cvtsi128_si32(from);
to[stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1));

View File

@ -92,7 +92,7 @@ struct linspaced_op_impl<Scalar,true>
template<typename Index>
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
const Scalar m_low;
const Scalar m_step;
@ -112,7 +112,7 @@ template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_o
template <typename Scalar, bool RandomAccess> struct linspaced_op
{
typedef typename packet_traits<Scalar>::type Packet;
linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {}
linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {}
template<typename Index>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }

View File

@ -320,6 +320,26 @@ struct functor_traits<scalar_asin_op<Scalar> >
};
};
/** \internal
* \brief Template functor to compute the atan of a scalar
* \sa class CwiseUnaryOp, ArrayBase::atan()
*/
template<typename Scalar> struct scalar_atan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_atan_op)
inline const Scalar operator() (const Scalar& a) const { using std::atan; return atan(a); }
typedef typename packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return internal::patan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_atan_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasATan
};
};
/** \internal
* \brief Template functor to compute the inverse of a scalar
* \sa class CwiseUnaryOp, Cwise::inverse()

View File

@ -218,7 +218,7 @@ struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
if(!EvalToDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = dest.size();
Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
MappedDest(actualDestPtr, dest.size()) = dest;
@ -227,7 +227,7 @@ struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
if(!UseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = rhs.size();
Index size = rhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;

View File

@ -322,7 +322,7 @@ template<> struct trmv_selector<RowMajor>
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = actualRhs.size();
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;

View File

@ -129,7 +129,6 @@ struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,
MKLPREFIX##axpy(&n, &alpha_,(const MKLTYPE*)x, &incx, (MKLTYPE*)_res, &incy); \
/* Non-square case - doesn't fit to MKL ?TRMV. Fall to default triangular product*/ \
if (size<(std::max)(rows,cols)) { \
typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
x = x_tmp.data(); \
if (size<rows) { \
@ -214,7 +213,6 @@ struct triangular_matrix_vector_product_trmv<Index,Mode,EIGTYPE,ConjLhs,EIGTYPE,
MKLPREFIX##axpy(&n, &alpha_,(const MKLTYPE*)x, &incx, (MKLTYPE*)_res, &incy); \
/* Non-square case - doesn't fit to MKL ?TRMV. Fall to default triangular product*/ \
if (size<(std::max)(rows,cols)) { \
typedef Matrix<EIGTYPE, Dynamic, Dynamic> MatrixLhs; \
if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
x = x_tmp.data(); \
if (size<rows) { \

View File

@ -236,35 +236,12 @@ template<typename Scalar> class Rotation2D;
template<typename Scalar> class AngleAxis;
template<typename Scalar,int Dim> class Translation;
#ifdef EIGEN2_SUPPORT
template<typename Derived, int _Dim> class eigen2_RotationBase;
template<typename Lhs, typename Rhs> class eigen2_Cross;
template<typename Scalar> class eigen2_Quaternion;
template<typename Scalar> class eigen2_Rotation2D;
template<typename Scalar> class eigen2_AngleAxis;
template<typename Scalar,int Dim> class eigen2_Transform;
template <typename _Scalar, int _AmbientDim> class eigen2_ParametrizedLine;
template <typename _Scalar, int _AmbientDim> class eigen2_Hyperplane;
template<typename Scalar,int Dim> class eigen2_Translation;
template<typename Scalar,int Dim> class eigen2_Scaling;
#endif
#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
template<typename Scalar> class Quaternion;
template<typename Scalar,int Dim> class Transform;
template <typename _Scalar, int _AmbientDim> class ParametrizedLine;
template <typename _Scalar, int _AmbientDim> class Hyperplane;
template<typename Scalar,int Dim> class Scaling;
#endif
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
template<typename Scalar, int Options = AutoAlign> class Quaternion;
template<typename Scalar,int Dim,int Mode,int _Options=AutoAlign> class Transform;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class ParametrizedLine;
template <typename _Scalar, int _AmbientDim, int Options=AutoAlign> class Hyperplane;
template<typename Scalar> class UniformScaling;
template<typename MatrixType,int Direction> class Homogeneous;
#endif
// MatrixFunctions module
template<typename Derived> struct MatrixExponentialReturnValue;
@ -283,18 +260,6 @@ struct stem_function
};
}
#ifdef EIGEN2_SUPPORT
template<typename ExpressionType> class Cwise;
template<typename MatrixType> class Minor;
template<typename MatrixType> class LU;
template<typename MatrixType> class QR;
template<typename MatrixType> class SVD;
namespace internal {
template<typename MatrixType, unsigned int Mode> struct eigen2_part_return_type;
}
#endif
} // end namespace Eigen
#endif // EIGEN_FORWARDDECLARATIONS_H

View File

@ -457,4 +457,16 @@ namespace Eigen {
const RHS \
>
#ifdef EIGEN_EXCEPTIONS
# define EIGEN_THROW_X(X) throw X
# define EIGEN_THROW throw
# define EIGEN_TRY try
# define EIGEN_CATCH(X) catch (X)
#else
# define EIGEN_THROW_X(X) std::abort()
# define EIGEN_THROW std::abort()
# define EIGEN_TRY if (true)
# define EIGEN_CATCH(X) else
#endif
#endif // EIGEN_MACROS_H

View File

@ -338,15 +338,6 @@ template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new
*** Construction/destruction of array elements ***
*****************************************************************************/
/** \internal Constructs the elements of an array.
* The \a size parameter tells on how many objects to call the constructor of T.
*/
template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
{
for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
return ptr;
}
/** \internal Destructs the elements of an array.
* The \a size parameters tells on how many objects to call the destructor of T.
*/
@ -357,6 +348,24 @@ template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
while(size) ptr[--size].~T();
}
/** \internal Constructs the elements of an array.
* The \a size parameter tells on how many objects to call the constructor of T.
*/
template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
{
size_t i;
EIGEN_TRY
{
for (i = 0; i < size; ++i) ::new (ptr + i) T;
return ptr;
}
EIGEN_CATCH(...)
{
destruct_elements_of_array(ptr, i);
EIGEN_THROW;
}
}
/*****************************************************************************
*** Implementation of aligned new/delete-like functions ***
*****************************************************************************/
@ -376,14 +385,30 @@ template<typename T> inline T* aligned_new(size_t size)
{
check_size_for_overflow<T>(size);
T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
return construct_elements_of_array(result, size);
EIGEN_TRY
{
return construct_elements_of_array(result, size);
}
EIGEN_CATCH(...)
{
aligned_free(result);
EIGEN_THROW;
}
}
template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
{
check_size_for_overflow<T>(size);
T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
return construct_elements_of_array(result, size);
EIGEN_TRY
{
return construct_elements_of_array(result, size);
}
EIGEN_CATCH(...)
{
conditional_aligned_free<Align>(result);
EIGEN_THROW;
}
}
/** \internal Deletes objects constructed with aligned_new
@ -412,7 +437,17 @@ template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pt
destruct_elements_of_array(pts+new_size, old_size-new_size);
T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
if(new_size > old_size)
construct_elements_of_array(result+old_size, new_size-old_size);
{
EIGEN_TRY
{
construct_elements_of_array(result+old_size, new_size-old_size);
}
EIGEN_CATCH(...)
{
conditional_aligned_free<Align>(result);
EIGEN_THROW;
}
}
return result;
}
@ -422,7 +457,17 @@ template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t s
check_size_for_overflow<T>(size);
T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
if(NumTraits<T>::RequireInitialization)
construct_elements_of_array(result, size);
{
EIGEN_TRY
{
construct_elements_of_array(result, size);
}
EIGEN_CATCH(...)
{
conditional_aligned_free<Align>(result);
EIGEN_THROW;
}
}
return result;
}
@ -434,7 +479,17 @@ template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(
destruct_elements_of_array(pts+new_size, old_size-new_size);
T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
if(NumTraits<T>::RequireInitialization && (new_size > old_size))
construct_elements_of_array(result+old_size, new_size-old_size);
{
EIGEN_TRY
{
construct_elements_of_array(result+old_size, new_size-old_size);
}
EIGEN_CATCH(...)
{
conditional_aligned_free<Align>(result);
EIGEN_THROW;
}
}
return result;
}
@ -552,7 +607,7 @@ template<typename T> struct smart_memmove_helper<T,false> {
// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
// to the appropriate stack allocation function
#ifndef EIGEN_ALLOCA
#if (defined __linux__) || (defined __APPLE__)
#if (defined __linux__) || (defined __APPLE__) || (defined alloca)
#define EIGEN_ALLOCA alloca
#elif defined(_MSC_VER)
#define EIGEN_ALLOCA _alloca
@ -607,12 +662,9 @@ template<typename T> class aligned_stack_memory_handler
* The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
*/
#ifdef EIGEN_ALLOCA
// The native alloca() that comes with llvm aligns buffer on 16 bytes even when AVX is enabled.
#if defined(__arm__) || defined(_WIN32) || EIGEN_ALIGN_BYTES > 16
#define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+EIGEN_ALIGN_BYTES)) & ~(size_t(EIGEN_ALIGN_BYTES-1))) + EIGEN_ALIGN_BYTES)
#else
#define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
#endif
// We always manually re-align the result of EIGEN_ALLOCA.
// If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
#define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+EIGEN_ALIGN_BYTES-1)) + EIGEN_ALIGN_BYTES-1) & ~(size_t(EIGEN_ALIGN_BYTES-1)))
#define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
@ -637,20 +689,11 @@ template<typename T> class aligned_stack_memory_handler
*****************************************************************************/
#if EIGEN_ALIGN
#ifdef EIGEN_EXCEPTIONS
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void* operator new(size_t size, const std::nothrow_t&) throw() { \
try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
catch (...) { return 0; } \
return 0; \
EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
EIGEN_CATCH (...) { return 0; } \
}
#else
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void* operator new(size_t size, const std::nothrow_t&) throw() { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
}
#endif
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
void *operator new(size_t size) { \
return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
@ -660,6 +703,8 @@ template<typename T> class aligned_stack_memory_handler
} \
void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
void operator delete(void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
void operator delete[](void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
/* in-place new and delete. since (at least afaik) there is no actual */ \
/* memory allocated we can safely let the default implementation handle */ \
/* this particular case. */ \

View File

@ -80,6 +80,34 @@ template<typename T> struct add_const_on_value_type<T*> { typedef T const
template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; };
template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; };
template<typename From, typename To>
struct is_convertible_impl
{
private:
struct any_conversion
{
template <typename T> any_conversion(const volatile T&);
template <typename T> any_conversion(T&);
};
struct yes {int a[1];};
struct no {int a[2];};
static yes test(const To&, int);
static no test(any_conversion, ...);
public:
static From ms_from;
enum { value = sizeof(test(ms_from, 0))==sizeof(yes) };
};
template<typename From, typename To>
struct is_convertible
{
enum { value = is_convertible_impl<typename remove_all<From>::type,
typename remove_all<To >::type>::value };
};
/** \internal Allows to enable/disable an overload
* according to a compile time condition.
*/

View File

@ -107,9 +107,9 @@
{Eigen::internal::static_assertion<bool(CONDITION)>::MSG;}
#else
// In some cases clang interprets bool(CONDITION) as function declaration
#define EIGEN_STATIC_ASSERT(CONDITION,MSG) \
if (Eigen::internal::static_assertion<bool(CONDITION)>::MSG) {}
if (Eigen::internal::static_assertion<static_cast<bool>(CONDITION)>::MSG) {}
#endif
@ -168,13 +168,8 @@
) \
)
#ifdef EIGEN2_SUPPORT
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \
eigen_assert(!NumTraits<Scalar>::IsInteger);
#else
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \
EIGEN_STATIC_ASSERT(!NumTraits<TYPE>::IsInteger, THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
#endif
// static assertion failing if it is guaranteed at compile-time that the two matrix expression types have different sizes

View File

@ -1,126 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BLOCK2_H
#define EIGEN_BLOCK2_H
namespace Eigen {
/** \returns a dynamic-size expression of a corner of *this.
*
* \param type the type of corner. Can be \a Eigen::TopLeft, \a Eigen::TopRight,
* \a Eigen::BottomLeft, \a Eigen::BottomRight.
* \param cRows the number of rows in the corner
* \param cCols the number of columns in the corner
*
* Example: \include MatrixBase_corner_enum_int_int.cpp
* Output: \verbinclude MatrixBase_corner_enum_int_int.out
*
* \note Even though the returned expression has dynamic size, in the case
* when it is applied to a fixed-size matrix, it inherits a fixed maximal size,
* which means that evaluating it does not cause a dynamic memory allocation.
*
* \sa class Block, block(Index,Index,Index,Index)
*/
template<typename Derived>
inline Block<Derived> DenseBase<Derived>
::corner(CornerType type, Index cRows, Index cCols)
{
switch(type)
{
default:
eigen_assert(false && "Bad corner type.");
case TopLeft:
return Block<Derived>(derived(), 0, 0, cRows, cCols);
case TopRight:
return Block<Derived>(derived(), 0, cols() - cCols, cRows, cCols);
case BottomLeft:
return Block<Derived>(derived(), rows() - cRows, 0, cRows, cCols);
case BottomRight:
return Block<Derived>(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
}
}
/** This is the const version of corner(CornerType, Index, Index).*/
template<typename Derived>
inline const Block<Derived>
DenseBase<Derived>::corner(CornerType type, Index cRows, Index cCols) const
{
switch(type)
{
default:
eigen_assert(false && "Bad corner type.");
case TopLeft:
return Block<Derived>(derived(), 0, 0, cRows, cCols);
case TopRight:
return Block<Derived>(derived(), 0, cols() - cCols, cRows, cCols);
case BottomLeft:
return Block<Derived>(derived(), rows() - cRows, 0, cRows, cCols);
case BottomRight:
return Block<Derived>(derived(), rows() - cRows, cols() - cCols, cRows, cCols);
}
}
/** \returns a fixed-size expression of a corner of *this.
*
* \param type the type of corner. Can be \a Eigen::TopLeft, \a Eigen::TopRight,
* \a Eigen::BottomLeft, \a Eigen::BottomRight.
*
* The template parameters CRows and CCols arethe number of rows and columns in the corner.
*
* Example: \include MatrixBase_template_int_int_corner_enum.cpp
* Output: \verbinclude MatrixBase_template_int_int_corner_enum.out
*
* \sa class Block, block(Index,Index,Index,Index)
*/
template<typename Derived>
template<int CRows, int CCols>
inline Block<Derived, CRows, CCols>
DenseBase<Derived>::corner(CornerType type)
{
switch(type)
{
default:
eigen_assert(false && "Bad corner type.");
case TopLeft:
return Block<Derived, CRows, CCols>(derived(), 0, 0);
case TopRight:
return Block<Derived, CRows, CCols>(derived(), 0, cols() - CCols);
case BottomLeft:
return Block<Derived, CRows, CCols>(derived(), rows() - CRows, 0);
case BottomRight:
return Block<Derived, CRows, CCols>(derived(), rows() - CRows, cols() - CCols);
}
}
/** This is the const version of corner<int, int>(CornerType).*/
template<typename Derived>
template<int CRows, int CCols>
inline const Block<Derived, CRows, CCols>
DenseBase<Derived>::corner(CornerType type) const
{
switch(type)
{
default:
eigen_assert(false && "Bad corner type.");
case TopLeft:
return Block<Derived, CRows, CCols>(derived(), 0, 0);
case TopRight:
return Block<Derived, CRows, CCols>(derived(), 0, cols() - CCols);
case BottomLeft:
return Block<Derived, CRows, CCols>(derived(), rows() - CRows, 0);
case BottomRight:
return Block<Derived, CRows, CCols>(derived(), rows() - CRows, cols() - CCols);
}
}
} // end namespace Eigen
#endif // EIGEN_BLOCK2_H

View File

@ -1,8 +0,0 @@
FILE(GLOB Eigen_Eigen2Support_SRCS "*.h")
INSTALL(FILES
${Eigen_Eigen2Support_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigen2Support COMPONENT Devel
)
ADD_SUBDIRECTORY(Geometry)

View File

@ -1,192 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_H
#define EIGEN_CWISE_H
namespace Eigen {
/** \internal
* convenient macro to defined the return type of a cwise binary operation */
#define EIGEN_CWISE_BINOP_RETURN_TYPE(OP) \
CwiseBinaryOp<OP<typename internal::traits<ExpressionType>::Scalar>, ExpressionType, OtherDerived>
/** \internal
* convenient macro to defined the return type of a cwise unary operation */
#define EIGEN_CWISE_UNOP_RETURN_TYPE(OP) \
CwiseUnaryOp<OP<typename internal::traits<ExpressionType>::Scalar>, ExpressionType>
/** \internal
* convenient macro to defined the return type of a cwise comparison to a scalar */
#define EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(OP) \
CwiseBinaryOp<OP<typename internal::traits<ExpressionType>::Scalar>, ExpressionType, \
typename ExpressionType::ConstantReturnType >
/** \class Cwise
*
* \brief Pseudo expression providing additional coefficient-wise operations
*
* \param ExpressionType the type of the object on which to do coefficient-wise operations
*
* This class represents an expression with additional coefficient-wise features.
* It is the return type of MatrixBase::cwise()
* and most of the time this is the only way it is used.
*
* Example: \include MatrixBase_cwise_const.cpp
* Output: \verbinclude MatrixBase_cwise_const.out
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_CWISE_PLUGIN.
*
* \sa MatrixBase::cwise() const, MatrixBase::cwise()
*/
template<typename ExpressionType> class Cwise
{
public:
typedef typename internal::traits<ExpressionType>::Scalar Scalar;
typedef typename internal::conditional<internal::must_nest_by_value<ExpressionType>::ret,
ExpressionType, const ExpressionType&>::type ExpressionTypeNested;
typedef CwiseUnaryOp<internal::scalar_add_op<Scalar>, ExpressionType> ScalarAddReturnType;
inline Cwise(const ExpressionType& matrix) : m_matrix(matrix) {}
/** \internal */
inline const ExpressionType& _expression() const { return m_matrix; }
template<typename OtherDerived>
const EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)
operator*(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)
operator/(const MatrixBase<OtherDerived> &other) const;
/** \deprecated ArrayBase::min() */
template<typename OtherDerived>
const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_min_op)
(min)(const MatrixBase<OtherDerived> &other) const
{ return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_min_op)(_expression(), other.derived()); }
/** \deprecated ArrayBase::max() */
template<typename OtherDerived>
const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_max_op)
(max)(const MatrixBase<OtherDerived> &other) const
{ return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_max_op)(_expression(), other.derived()); }
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs_op) abs() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs2_op) abs2() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_square_op) square() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cube_op) cube() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_inverse_op) inverse() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sqrt_op) sqrt() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_exp_op) exp() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_log_op) log() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cos_op) cos() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sin_op) sin() const;
const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op) pow(const Scalar& exponent) const;
const ScalarAddReturnType
operator+(const Scalar& scalar) const;
/** \relates Cwise */
friend const ScalarAddReturnType
operator+(const Scalar& scalar, const Cwise& mat)
{ return mat + scalar; }
ExpressionType& operator+=(const Scalar& scalar);
const ScalarAddReturnType
operator-(const Scalar& scalar) const;
ExpressionType& operator-=(const Scalar& scalar);
template<typename OtherDerived>
inline ExpressionType& operator*=(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
inline ExpressionType& operator/=(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)
operator<(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)
operator<=(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)
operator>(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)
operator>=(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)
operator==(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived> const EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)
operator!=(const MatrixBase<OtherDerived>& other) const;
// comparisons to a scalar value
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)
operator<(Scalar s) const;
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)
operator<=(Scalar s) const;
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)
operator>(Scalar s) const;
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)
operator>=(Scalar s) const;
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)
operator==(Scalar s) const;
const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)
operator!=(Scalar s) const;
// allow to extend Cwise outside Eigen
#ifdef EIGEN_CWISE_PLUGIN
#include EIGEN_CWISE_PLUGIN
#endif
protected:
ExpressionTypeNested m_matrix;
};
/** \returns a Cwise wrapper of *this providing additional coefficient-wise operations
*
* Example: \include MatrixBase_cwise_const.cpp
* Output: \verbinclude MatrixBase_cwise_const.out
*
* \sa class Cwise, cwise()
*/
template<typename Derived>
inline const Cwise<Derived> MatrixBase<Derived>::cwise() const
{
return derived();
}
/** \returns a Cwise wrapper of *this providing additional coefficient-wise operations
*
* Example: \include MatrixBase_cwise.cpp
* Output: \verbinclude MatrixBase_cwise.out
*
* \sa class Cwise, cwise() const
*/
template<typename Derived>
inline Cwise<Derived> MatrixBase<Derived>::cwise()
{
return derived();
}
} // end namespace Eigen
#endif // EIGEN_CWISE_H

View File

@ -1,298 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARRAY_CWISE_OPERATORS_H
#define EIGEN_ARRAY_CWISE_OPERATORS_H
namespace Eigen {
/***************************************************************************
* The following functions were defined in Core
***************************************************************************/
/** \deprecated ArrayBase::abs() */
template<typename ExpressionType>
EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs_op)
Cwise<ExpressionType>::abs() const
{
return _expression();
}
/** \deprecated ArrayBase::abs2() */
template<typename ExpressionType>
EIGEN_STRONG_INLINE const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs2_op)
Cwise<ExpressionType>::abs2() const
{
return _expression();
}
/** \deprecated ArrayBase::exp() */
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_exp_op)
Cwise<ExpressionType>::exp() const
{
return _expression();
}
/** \deprecated ArrayBase::log() */
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_log_op)
Cwise<ExpressionType>::log() const
{
return _expression();
}
/** \deprecated ArrayBase::operator*() */
template<typename ExpressionType>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)
Cwise<ExpressionType>::operator*(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_PRODUCT_RETURN_TYPE(ExpressionType,OtherDerived)(_expression(), other.derived());
}
/** \deprecated ArrayBase::operator/() */
template<typename ExpressionType>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)
Cwise<ExpressionType>::operator/(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)(_expression(), other.derived());
}
/** \deprecated ArrayBase::operator*=() */
template<typename ExpressionType>
template<typename OtherDerived>
inline ExpressionType& Cwise<ExpressionType>::operator*=(const MatrixBase<OtherDerived> &other)
{
return m_matrix.const_cast_derived() = *this * other;
}
/** \deprecated ArrayBase::operator/=() */
template<typename ExpressionType>
template<typename OtherDerived>
inline ExpressionType& Cwise<ExpressionType>::operator/=(const MatrixBase<OtherDerived> &other)
{
return m_matrix.const_cast_derived() = *this / other;
}
/***************************************************************************
* The following functions were defined in Array
***************************************************************************/
// -- unary operators --
/** \deprecated ArrayBase::sqrt() */
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sqrt_op)
Cwise<ExpressionType>::sqrt() const
{
return _expression();
}
/** \deprecated ArrayBase::cos() */
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cos_op)
Cwise<ExpressionType>::cos() const
{
return _expression();
}
/** \deprecated ArrayBase::sin() */
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_sin_op)
Cwise<ExpressionType>::sin() const
{
return _expression();
}
/** \deprecated ArrayBase::log() */
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op)
Cwise<ExpressionType>::pow(const Scalar& exponent) const
{
return EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_pow_op)(_expression(), internal::scalar_pow_op<Scalar>(exponent));
}
/** \deprecated ArrayBase::inverse() */
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_inverse_op)
Cwise<ExpressionType>::inverse() const
{
return _expression();
}
/** \deprecated ArrayBase::square() */
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_square_op)
Cwise<ExpressionType>::square() const
{
return _expression();
}
/** \deprecated ArrayBase::cube() */
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_cube_op)
Cwise<ExpressionType>::cube() const
{
return _expression();
}
// -- binary operators --
/** \deprecated ArrayBase::operator<() */
template<typename ExpressionType>
template<typename OtherDerived>
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)
Cwise<ExpressionType>::operator<(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::less)(_expression(), other.derived());
}
/** \deprecated ArrayBase::<=() */
template<typename ExpressionType>
template<typename OtherDerived>
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)
Cwise<ExpressionType>::operator<=(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::less_equal)(_expression(), other.derived());
}
/** \deprecated ArrayBase::operator>() */
template<typename ExpressionType>
template<typename OtherDerived>
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)
Cwise<ExpressionType>::operator>(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater)(_expression(), other.derived());
}
/** \deprecated ArrayBase::operator>=() */
template<typename ExpressionType>
template<typename OtherDerived>
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)
Cwise<ExpressionType>::operator>=(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::greater_equal)(_expression(), other.derived());
}
/** \deprecated ArrayBase::operator==() */
template<typename ExpressionType>
template<typename OtherDerived>
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)
Cwise<ExpressionType>::operator==(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::equal_to)(_expression(), other.derived());
}
/** \deprecated ArrayBase::operator!=() */
template<typename ExpressionType>
template<typename OtherDerived>
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)
Cwise<ExpressionType>::operator!=(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(std::not_equal_to)(_expression(), other.derived());
}
// comparisons to scalar value
/** \deprecated ArrayBase::operator<(Scalar) */
template<typename ExpressionType>
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)
Cwise<ExpressionType>::operator<(Scalar s) const
{
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less)(_expression(),
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
}
/** \deprecated ArrayBase::operator<=(Scalar) */
template<typename ExpressionType>
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)
Cwise<ExpressionType>::operator<=(Scalar s) const
{
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::less_equal)(_expression(),
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
}
/** \deprecated ArrayBase::operator>(Scalar) */
template<typename ExpressionType>
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)
Cwise<ExpressionType>::operator>(Scalar s) const
{
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater)(_expression(),
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
}
/** \deprecated ArrayBase::operator>=(Scalar) */
template<typename ExpressionType>
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)
Cwise<ExpressionType>::operator>=(Scalar s) const
{
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::greater_equal)(_expression(),
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
}
/** \deprecated ArrayBase::operator==(Scalar) */
template<typename ExpressionType>
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)
Cwise<ExpressionType>::operator==(Scalar s) const
{
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::equal_to)(_expression(),
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
}
/** \deprecated ArrayBase::operator!=(Scalar) */
template<typename ExpressionType>
inline const EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)
Cwise<ExpressionType>::operator!=(Scalar s) const
{
return EIGEN_CWISE_COMP_TO_SCALAR_RETURN_TYPE(std::not_equal_to)(_expression(),
typename ExpressionType::ConstantReturnType(_expression().rows(), _expression().cols(), s));
}
// scalar addition
/** \deprecated ArrayBase::operator+(Scalar) */
template<typename ExpressionType>
inline const typename Cwise<ExpressionType>::ScalarAddReturnType
Cwise<ExpressionType>::operator+(const Scalar& scalar) const
{
return typename Cwise<ExpressionType>::ScalarAddReturnType(m_matrix, internal::scalar_add_op<Scalar>(scalar));
}
/** \deprecated ArrayBase::operator+=(Scalar) */
template<typename ExpressionType>
inline ExpressionType& Cwise<ExpressionType>::operator+=(const Scalar& scalar)
{
return m_matrix.const_cast_derived() = *this + scalar;
}
/** \deprecated ArrayBase::operator-(Scalar) */
template<typename ExpressionType>
inline const typename Cwise<ExpressionType>::ScalarAddReturnType
Cwise<ExpressionType>::operator-(const Scalar& scalar) const
{
return *this + (-scalar);
}
/** \deprecated ArrayBase::operator-=(Scalar) */
template<typename ExpressionType>
inline ExpressionType& Cwise<ExpressionType>::operator-=(const Scalar& scalar)
{
return m_matrix.const_cast_derived() = *this - scalar;
}
} // end namespace Eigen
#endif // EIGEN_ARRAY_CWISE_OPERATORS_H

View File

@ -1,159 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
* \nonstableyet
*
* \class AlignedBox
*
* \brief An axis aligned box
*
* \param _Scalar the type of the scalar coefficients
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
*
* This class represents an axis aligned box as a pair of the minimal and maximal corners.
*/
template <typename _Scalar, int _AmbientDim>
class AlignedBox
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
enum { AmbientDimAtCompileTime = _AmbientDim };
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
/** Default constructor initializing a null box. */
inline AlignedBox()
{ if (AmbientDimAtCompileTime!=Dynamic) setNull(); }
/** Constructs a null box with \a _dim the dimension of the ambient space. */
inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim)
{ setNull(); }
/** Constructs a box with extremities \a _min and \a _max. */
inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {}
/** Constructs a box containing a single point \a p. */
inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {}
~AlignedBox() {}
/** \returns the dimension in which the box holds */
inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; }
/** \returns true if the box is null, i.e, empty. */
inline bool isNull() const { return (m_min.cwise() > m_max).any(); }
/** Makes \c *this a null/empty box. */
inline void setNull()
{
m_min.setConstant( (std::numeric_limits<Scalar>::max)());
m_max.setConstant(-(std::numeric_limits<Scalar>::max)());
}
/** \returns the minimal corner */
inline const VectorType& (min)() const { return m_min; }
/** \returns a non const reference to the minimal corner */
inline VectorType& (min)() { return m_min; }
/** \returns the maximal corner */
inline const VectorType& (max)() const { return m_max; }
/** \returns a non const reference to the maximal corner */
inline VectorType& (max)() { return m_max; }
/** \returns true if the point \a p is inside the box \c *this. */
inline bool contains(const VectorType& p) const
{ return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); }
/** \returns true if the box \a b is entirely inside the box \c *this. */
inline bool contains(const AlignedBox& b) const
{ return (m_min.cwise()<=(b.min)()).all() && ((b.max)().cwise()<=m_max).all(); }
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
inline AlignedBox& extend(const VectorType& p)
{ m_min = (m_min.cwise().min)(p); m_max = (m_max.cwise().max)(p); return *this; }
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
inline AlignedBox& extend(const AlignedBox& b)
{ m_min = (m_min.cwise().min)(b.m_min); m_max = (m_max.cwise().max)(b.m_max); return *this; }
/** Clamps \c *this by the box \a b and returns a reference to \c *this. */
inline AlignedBox& clamp(const AlignedBox& b)
{ m_min = (m_min.cwise().max)(b.m_min); m_max = (m_max.cwise().min)(b.m_max); return *this; }
/** Translate \c *this by the vector \a t and returns a reference to \c *this. */
inline AlignedBox& translate(const VectorType& t)
{ m_min += t; m_max += t; return *this; }
/** \returns the squared distance between the point \a p and the box \c *this,
* and zero if \a p is inside the box.
* \sa exteriorDistance()
*/
inline Scalar squaredExteriorDistance(const VectorType& p) const;
/** \returns the distance between the point \a p and the box \c *this,
* and zero if \a p is inside the box.
* \sa squaredExteriorDistance()
*/
inline Scalar exteriorDistance(const VectorType& p) const
{ return ei_sqrt(squaredExteriorDistance(p)); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<AlignedBox,
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
{
return typename internal::cast_return_type<AlignedBox,
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
}
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
{
m_min = (other.min)().template cast<Scalar>();
m_max = (other.max)().template cast<Scalar>();
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
protected:
VectorType m_min, m_max;
};
template<typename Scalar,int AmbiantDim>
inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const
{
Scalar dist2(0);
Scalar aux;
for (int k=0; k<dim(); ++k)
{
if ((aux = (p[k]-m_min[k]))<Scalar(0))
dist2 += aux*aux;
else if ( (aux = (m_max[k]-p[k]))<Scalar(0))
dist2 += aux*aux;
}
return dist2;
}
} // end namespace Eigen

View File

@ -1,115 +0,0 @@
#ifndef EIGEN2_GEOMETRY_MODULE_H
#define EIGEN2_GEOMETRY_MODULE_H
#include <limits>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
#include "RotationBase.h"
#include "Rotation2D.h"
#include "Quaternion.h"
#include "AngleAxis.h"
#include "Transform.h"
#include "Translation.h"
#include "Scaling.h"
#include "AlignedBox.h"
#include "Hyperplane.h"
#include "ParametrizedLine.h"
#endif
#define RotationBase eigen2_RotationBase
#define Rotation2D eigen2_Rotation2D
#define Rotation2Df eigen2_Rotation2Df
#define Rotation2Dd eigen2_Rotation2Dd
#define Quaternion eigen2_Quaternion
#define Quaternionf eigen2_Quaternionf
#define Quaterniond eigen2_Quaterniond
#define AngleAxis eigen2_AngleAxis
#define AngleAxisf eigen2_AngleAxisf
#define AngleAxisd eigen2_AngleAxisd
#define Transform eigen2_Transform
#define Transform2f eigen2_Transform2f
#define Transform2d eigen2_Transform2d
#define Transform3f eigen2_Transform3f
#define Transform3d eigen2_Transform3d
#define Translation eigen2_Translation
#define Translation2f eigen2_Translation2f
#define Translation2d eigen2_Translation2d
#define Translation3f eigen2_Translation3f
#define Translation3d eigen2_Translation3d
#define Scaling eigen2_Scaling
#define Scaling2f eigen2_Scaling2f
#define Scaling2d eigen2_Scaling2d
#define Scaling3f eigen2_Scaling3f
#define Scaling3d eigen2_Scaling3d
#define AlignedBox eigen2_AlignedBox
#define Hyperplane eigen2_Hyperplane
#define ParametrizedLine eigen2_ParametrizedLine
#define ei_toRotationMatrix eigen2_ei_toRotationMatrix
#define ei_quaternion_assign_impl eigen2_ei_quaternion_assign_impl
#define ei_transform_product_impl eigen2_ei_transform_product_impl
#include "RotationBase.h"
#include "Rotation2D.h"
#include "Quaternion.h"
#include "AngleAxis.h"
#include "Transform.h"
#include "Translation.h"
#include "Scaling.h"
#include "AlignedBox.h"
#include "Hyperplane.h"
#include "ParametrizedLine.h"
#undef ei_toRotationMatrix
#undef ei_quaternion_assign_impl
#undef ei_transform_product_impl
#undef RotationBase
#undef Rotation2D
#undef Rotation2Df
#undef Rotation2Dd
#undef Quaternion
#undef Quaternionf
#undef Quaterniond
#undef AngleAxis
#undef AngleAxisf
#undef AngleAxisd
#undef Transform
#undef Transform2f
#undef Transform2d
#undef Transform3f
#undef Transform3d
#undef Translation
#undef Translation2f
#undef Translation2d
#undef Translation3f
#undef Translation3d
#undef Scaling
#undef Scaling2f
#undef Scaling2d
#undef Scaling3f
#undef Scaling3d
#undef AlignedBox
#undef Hyperplane
#undef ParametrizedLine
#endif // EIGEN2_GEOMETRY_MODULE_H

View File

@ -1,228 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class AngleAxis
*
* \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
*
* The following two typedefs are provided for convenience:
* \li \c AngleAxisf for \c float
* \li \c AngleAxisd for \c double
*
* \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
*
* Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
* mimic Euler-angles. Here is an example:
* \include AngleAxis_mimic_euler.cpp
* Output: \verbinclude AngleAxis_mimic_euler.out
*
* \note This class is not aimed to be used to store a rotation transformation,
* but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
* and transformation objects.
*
* \sa class Quaternion, class Transform, MatrixBase::UnitX()
*/
template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
{
typedef _Scalar Scalar;
};
template<typename _Scalar>
class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
{
typedef RotationBase<AngleAxis<_Scalar>,3> Base;
public:
using Base::operator*;
enum { Dim = 3 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> QuaternionType;
protected:
Vector3 m_axis;
Scalar m_angle;
public:
/** Default constructor without initialization. */
AngleAxis() {}
/** Constructs and initialize the angle-axis rotation from an \a angle in radian
* and an \a axis which must be normalized. */
template<typename Derived>
inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle)
{
using std::sqrt;
using std::abs;
// since we compare against 1, this is equal to computing the relative error
eigen_assert( abs(m_axis.derived().squaredNorm() - 1) < sqrt( NumTraits<Scalar>::dummy_precision() ) );
}
/** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
inline AngleAxis(const QuaternionType& q) { *this = q; }
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
template<typename Derived>
inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
Scalar angle() const { return m_angle; }
Scalar& angle() { return m_angle; }
const Vector3& axis() const { return m_axis; }
Vector3& axis() { return m_axis; }
/** Concatenates two rotations */
inline QuaternionType operator* (const AngleAxis& other) const
{ return QuaternionType(*this) * QuaternionType(other); }
/** Concatenates two rotations */
inline QuaternionType operator* (const QuaternionType& other) const
{ return QuaternionType(*this) * other; }
/** Concatenates two rotations */
friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
{ return a * QuaternionType(b); }
/** Concatenates two rotations */
inline Matrix3 operator* (const Matrix3& other) const
{ return toRotationMatrix() * other; }
/** Concatenates two rotations */
inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
{ return a * b.toRotationMatrix(); }
/** Applies rotation to vector */
inline Vector3 operator* (const Vector3& other) const
{ return toRotationMatrix() * other; }
/** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
AngleAxis inverse() const
{ return AngleAxis(-m_angle, m_axis); }
AngleAxis& operator=(const QuaternionType& q);
template<typename Derived>
AngleAxis& operator=(const MatrixBase<Derived>& m);
template<typename Derived>
AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix3 toRotationMatrix(void) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
{ return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
{
m_axis = other.axis().template cast<Scalar>();
m_angle = Scalar(other.angle());
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
};
/** \ingroup Geometry_Module
* single precision angle-axis type */
typedef AngleAxis<float> AngleAxisf;
/** \ingroup Geometry_Module
* double precision angle-axis type */
typedef AngleAxis<double> AngleAxisd;
/** Set \c *this from a quaternion.
* The axis is normalized.
*/
template<typename Scalar>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
{
Scalar n2 = q.vec().squaredNorm();
if (n2 < precision<Scalar>()*precision<Scalar>())
{
m_angle = 0;
m_axis << 1, 0, 0;
}
else
{
m_angle = 2*std::acos(q.w());
m_axis = q.vec() / ei_sqrt(n2);
using std::sqrt;
using std::abs;
// since we compare against 1, this is equal to computing the relative error
eigen_assert( abs(m_axis.derived().squaredNorm() - 1) < sqrt( NumTraits<Scalar>::dummy_precision() ) );
}
return *this;
}
/** Set \c *this from a 3x3 rotation matrix \a mat.
*/
template<typename Scalar>
template<typename Derived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
{
// Since a direct conversion would not be really faster,
// let's use the robust Quaternion implementation:
return *this = QuaternionType(mat);
}
/** Constructs and \returns an equivalent 3x3 rotation matrix.
*/
template<typename Scalar>
typename AngleAxis<Scalar>::Matrix3
AngleAxis<Scalar>::toRotationMatrix(void) const
{
Matrix3 res;
Vector3 sin_axis = ei_sin(m_angle) * m_axis;
Scalar c = ei_cos(m_angle);
Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
Scalar tmp;
tmp = cos1_axis.x() * m_axis.y();
res.coeffRef(0,1) = tmp - sin_axis.z();
res.coeffRef(1,0) = tmp + sin_axis.z();
tmp = cos1_axis.x() * m_axis.z();
res.coeffRef(0,2) = tmp + sin_axis.y();
res.coeffRef(2,0) = tmp - sin_axis.y();
tmp = cos1_axis.y() * m_axis.z();
res.coeffRef(1,2) = tmp - sin_axis.x();
res.coeffRef(2,1) = tmp + sin_axis.x();
res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;
return res;
}
} // end namespace Eigen

View File

@ -1,6 +0,0 @@
FILE(GLOB Eigen_Eigen2Support_Geometry_SRCS "*.h")
INSTALL(FILES
${Eigen_Eigen2Support_Geometry_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigen2Support/Geometry
)

View File

@ -1,254 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Hyperplane
*
* \brief A hyperplane
*
* A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
* For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
* Notice that the dimension of the hyperplane is _AmbientDim-1.
*
* This class represents an hyperplane as the zero set of the implicit equation
* \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
* and \f$ d \f$ is the distance (offset) to the origin.
*/
template <typename _Scalar, int _AmbientDim>
class Hyperplane
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
enum { AmbientDimAtCompileTime = _AmbientDim };
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic
? Dynamic
: int(AmbientDimAtCompileTime)+1,1> Coefficients;
typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
/** Default constructor without initialization */
inline Hyperplane() {}
/** Constructs a dynamic-size hyperplane with \a _dim the dimension
* of the ambient space */
inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
/** Construct a plane from its normal \a n and a point \a e onto the plane.
* \warning the vector normal is assumed to be normalized.
*/
inline Hyperplane(const VectorType& n, const VectorType& e)
: m_coeffs(n.size()+1)
{
normal() = n;
offset() = -e.eigen2_dot(n);
}
/** Constructs a plane from its normal \a n and distance to the origin \a d
* such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
* \warning the vector normal is assumed to be normalized.
*/
inline Hyperplane(const VectorType& n, Scalar d)
: m_coeffs(n.size()+1)
{
normal() = n;
offset() = d;
}
/** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
* is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
*/
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
{
Hyperplane result(p0.size());
result.normal() = (p1 - p0).unitOrthogonal();
result.offset() = -result.normal().eigen2_dot(p0);
return result;
}
/** Constructs a hyperplane passing through the three points. The dimension of the ambient space
* is required to be exactly 3.
*/
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
Hyperplane result(p0.size());
result.normal() = (p2 - p0).cross(p1 - p0).normalized();
result.offset() = -result.normal().eigen2_dot(p0);
return result;
}
/** Constructs a hyperplane passing through the parametrized line \a parametrized.
* If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
* so an arbitrary choice is made.
*/
// FIXME to be consitent with the rest this could be implemented as a static Through function ??
explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
{
normal() = parametrized.direction().unitOrthogonal();
offset() = -normal().eigen2_dot(parametrized.origin());
}
~Hyperplane() {}
/** \returns the dimension in which the plane holds */
inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); }
/** normalizes \c *this */
void normalize(void)
{
m_coeffs /= normal().norm();
}
/** \returns the signed distance between the plane \c *this and a point \a p.
* \sa absDistance()
*/
inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); }
/** \returns the absolute distance between the plane \c *this and a point \a p.
* \sa signedDistance()
*/
inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
/** \returns the projection of a point \a p onto the plane \c *this.
*/
inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
/** \returns a constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); }
/** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
/** \returns the distance to the origin, which is also the "constant term" of the implicit equation
* \warning the vector normal is assumed to be normalized.
*/
inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
/** \returns a non-constant reference to the distance to the origin, which is also the constant part
* of the implicit equation */
inline Scalar& offset() { return m_coeffs(dim()); }
/** \returns a constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
inline const Coefficients& coeffs() const { return m_coeffs; }
/** \returns a non-constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
inline Coefficients& coeffs() { return m_coeffs; }
/** \returns the intersection of *this with \a other.
*
* \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
*
* \note If \a other is approximately parallel to *this, this method will return any point on *this.
*/
VectorType intersection(const Hyperplane& other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
// since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
// whether the two lines are approximately parallel.
if(ei_isMuchSmallerThan(det, Scalar(1)))
{ // special case where the two lines are approximately parallel. Pick any point on the first line.
if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
else
return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
}
else
{ // general case
Scalar invdet = Scalar(1) / det;
return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
}
}
/** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
*
* \param mat the Dim x Dim transformation matrix
* \param traits specifies whether the matrix \a mat represents an Isometry
* or a more generic Affine transformation. The default is Affine.
*/
template<typename XprType>
inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
{
if (traits==Affine)
normal() = mat.inverse().transpose() * normal();
else if (traits==Isometry)
normal() = mat * normal();
else
{
ei_assert("invalid traits value in Hyperplane::transform()");
}
return *this;
}
/** Applies the transformation \a t to \c *this and returns a reference to \c *this.
*
* \param t the transformation of dimension Dim
* \param traits specifies whether the transformation \a t represents an Isometry
* or a more generic Affine transformation. The default is Affine.
* Other kind of transformations are not supported.
*/
inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
TransformTraits traits = Affine)
{
transform(t.linear(), traits);
offset() -= t.translation().eigen2_dot(normal());
return *this;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<Hyperplane,
Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
{
return typename internal::cast_return_type<Hyperplane,
Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
}
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
protected:
Coefficients m_coeffs;
};
} // end namespace Eigen

View File

@ -1,141 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class ParametrizedLine
*
* \brief A parametrized line
*
* A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit
* direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
* the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ l \in \mathbf{R} \f$.
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
*/
template <typename _Scalar, int _AmbientDim>
class ParametrizedLine
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
enum { AmbientDimAtCompileTime = _AmbientDim };
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
/** Default constructor without initialization */
inline ParametrizedLine() {}
/** Constructs a dynamic-size line with \a _dim the dimension
* of the ambient space */
inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {}
/** Initializes a parametrized line of direction \a direction and origin \a origin.
* \warning the vector direction is assumed to be normalized.
*/
ParametrizedLine(const VectorType& origin, const VectorType& direction)
: m_origin(origin), m_direction(direction) {}
explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
/** Constructs a parametrized line going from \a p0 to \a p1. */
static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
{ return ParametrizedLine(p0, (p1-p0).normalized()); }
~ParametrizedLine() {}
/** \returns the dimension in which the line holds */
inline int dim() const { return m_direction.size(); }
const VectorType& origin() const { return m_origin; }
VectorType& origin() { return m_origin; }
const VectorType& direction() const { return m_direction; }
VectorType& direction() { return m_direction; }
/** \returns the squared distance of a point \a p to its projection onto the line \c *this.
* \sa distance()
*/
RealScalar squaredDistance(const VectorType& p) const
{
VectorType diff = p-origin();
return (diff - diff.eigen2_dot(direction())* direction()).squaredNorm();
}
/** \returns the distance of a point \a p to its projection onto the line \c *this.
* \sa squaredDistance()
*/
RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); }
/** \returns the projection of a point \a p onto the line \c *this. */
VectorType projection(const VectorType& p) const
{ return origin() + (p-origin()).eigen2_dot(direction()) * direction(); }
Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<ParametrizedLine,
ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
{
return typename internal::cast_return_type<ParametrizedLine,
ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
}
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime>& other)
{
m_origin = other.origin().template cast<Scalar>();
m_direction = other.direction().template cast<Scalar>();
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
protected:
VectorType m_origin, m_direction;
};
/** Constructs a parametrized line from a 2D hyperplane
*
* \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line
*/
template <typename _Scalar, int _AmbientDim>
inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
direction() = hyperplane.normal().unitOrthogonal();
origin() = -hyperplane.normal()*hyperplane.offset();
}
/** \returns the parameter value of the intersection between \c *this and the given hyperplane
*/
template <typename _Scalar, int _AmbientDim>
inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
{
return -(hyperplane.offset()+origin().eigen2_dot(hyperplane.normal()))
/(direction().eigen2_dot(hyperplane.normal()));
}
} // end namespace Eigen

View File

@ -1,495 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct ei_quaternion_assign_impl;
/** \geometry_module \ingroup Geometry_Module
*
* \class Quaternion
*
* \brief The quaternion class used to represent 3D orientations and rotations
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
*
* This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
* orientations and rotations of objects in three dimensions. Compared to other representations
* like Euler angles or 3x3 matrices, quatertions offer the following advantages:
* \li \b compact storage (4 scalars)
* \li \b efficient to compose (28 flops),
* \li \b stable spherical interpolation
*
* The following two typedefs are provided for convenience:
* \li \c Quaternionf for \c float
* \li \c Quaterniond for \c double
*
* \sa class AngleAxis, class Transform
*/
template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
{
typedef _Scalar Scalar;
};
template<typename _Scalar>
class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
{
typedef RotationBase<Quaternion<_Scalar>,3> Base;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)
using Base::operator*;
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** the type of the Coefficients 4-vector */
typedef Matrix<Scalar, 4, 1> Coefficients;
/** the type of a 3D vector */
typedef Matrix<Scalar,3,1> Vector3;
/** the equivalent rotation matrix type */
typedef Matrix<Scalar,3,3> Matrix3;
/** the equivalent angle-axis type */
typedef AngleAxis<Scalar> AngleAxisType;
/** \returns the \c x coefficient */
inline Scalar x() const { return m_coeffs.coeff(0); }
/** \returns the \c y coefficient */
inline Scalar y() const { return m_coeffs.coeff(1); }
/** \returns the \c z coefficient */
inline Scalar z() const { return m_coeffs.coeff(2); }
/** \returns the \c w coefficient */
inline Scalar w() const { return m_coeffs.coeff(3); }
/** \returns a reference to the \c x coefficient */
inline Scalar& x() { return m_coeffs.coeffRef(0); }
/** \returns a reference to the \c y coefficient */
inline Scalar& y() { return m_coeffs.coeffRef(1); }
/** \returns a reference to the \c z coefficient */
inline Scalar& z() { return m_coeffs.coeffRef(2); }
/** \returns a reference to the \c w coefficient */
inline Scalar& w() { return m_coeffs.coeffRef(3); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
inline const Coefficients& coeffs() const { return m_coeffs; }
/** \returns a vector expression of the coefficients (x,y,z,w) */
inline Coefficients& coeffs() { return m_coeffs; }
/** Default constructor leaving the quaternion uninitialized. */
inline Quaternion() {}
/** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
* its four coefficients \a w, \a x, \a y and \a z.
*
* \warning Note the order of the arguments: the real \a w coefficient first,
* while internally the coefficients are stored in the following order:
* [\c x, \c y, \c z, \c w]
*/
inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
{ m_coeffs << x, y, z, w; }
/** Copy constructor */
inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
/** Constructs and initializes a quaternion from the angle-axis \a aa */
explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
/** Constructs and initializes a quaternion from either:
* - a rotation matrix expression,
* - a 4D vector expression representing quaternion coefficients.
* \sa operator=(MatrixBase<Derived>)
*/
template<typename Derived>
explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
Quaternion& operator=(const Quaternion& other);
Quaternion& operator=(const AngleAxisType& aa);
template<typename Derived>
Quaternion& operator=(const MatrixBase<Derived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
/** \sa Quaternion::Identity(), MatrixBase::setIdentity()
*/
inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa Quaternion::norm(), MatrixBase::squaredNorm()
*/
inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }
/** \returns the norm of the quaternion's coefficients
* \sa Quaternion::squaredNorm(), MatrixBase::norm()
*/
inline Scalar norm() const { return m_coeffs.norm(); }
/** Normalizes the quaternion \c *this
* \sa normalized(), MatrixBase::normalize() */
inline void normalize() { m_coeffs.normalize(); }
/** \returns a normalized version of \c *this
* \sa normalize(), MatrixBase::normalized() */
inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); }
inline Scalar angularDistance(const Quaternion& other) const;
Matrix3 toRotationMatrix(void) const;
template<typename Derived1, typename Derived2>
Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
inline Quaternion operator* (const Quaternion& q) const;
inline Quaternion& operator*= (const Quaternion& q);
Quaternion inverse(void) const;
Quaternion conjugate(void) const;
Quaternion slerp(Scalar t, const Quaternion& other) const;
template<typename Derived>
Vector3 operator* (const MatrixBase<Derived>& vec) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
{ return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
protected:
Coefficients m_coeffs;
};
/** \ingroup Geometry_Module
* single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup Geometry_Module
* double precision quaternion type */
typedef Quaternion<double> Quaterniond;
// Generic Quaternion * Quaternion product
template<typename Scalar> inline Quaternion<Scalar>
ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
{
return Quaternion<Scalar>
(
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
);
}
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
{
return ei_quaternion_product(*this,other);
}
/** \sa operator*(Quaternion) */
template <typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
{
return (*this = *this * other);
}
/** Rotation of a vector by a quaternion.
* \remarks If the quaternion is used to rotate several points (>1)
* then it is much more efficient to first convert it to a 3x3 Matrix.
* Comparison of the operation cost for n transformations:
* - Quaternion: 30n
* - Via a Matrix3: 24 + 15n
*/
template <typename Scalar>
template<typename Derived>
inline typename Quaternion<Scalar>::Vector3
Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
{
// Note that this algorithm comes from the optimization by hand
// of the conversion to a Matrix followed by a Matrix/Vector product.
// It appears to be much faster than the common algorithm found
// in the litterature (30 versus 39 flops). It also requires two
// Vector3 as temporaries.
Vector3 uv;
uv = 2 * this->vec().cross(v);
return v + this->w() * uv + this->vec().cross(uv);
}
template<typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
{
m_coeffs = other.m_coeffs;
return *this;
}
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/
template<typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
{
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
this->w() = ei_cos(ha);
this->vec() = ei_sin(ha) * aa.axis();
return *this;
}
/** Set \c *this from the expression \a xpr:
* - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
* - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
* and \a xpr is converted to a quaternion
*/
template<typename Scalar>
template<typename Derived>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
{
ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
return *this;
}
/** Convert the quaternion to a 3x3 rotation matrix */
template<typename Scalar>
inline typename Quaternion<Scalar>::Matrix3
Quaternion<Scalar>::toRotationMatrix(void) const
{
// NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
// if not inlined then the cost of the return by value is huge ~ +35%,
// however, not inlining this function is an order of magnitude slower, so
// it has to be inlined, and so the return by value is not an issue
Matrix3 res;
const Scalar tx = Scalar(2)*this->x();
const Scalar ty = Scalar(2)*this->y();
const Scalar tz = Scalar(2)*this->z();
const Scalar twx = tx*this->w();
const Scalar twy = ty*this->w();
const Scalar twz = tz*this->w();
const Scalar txx = tx*this->x();
const Scalar txy = ty*this->x();
const Scalar txz = tz*this->x();
const Scalar tyy = ty*this->y();
const Scalar tyz = tz*this->y();
const Scalar tzz = tz*this->z();
res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
res.coeffRef(0,1) = txy-twz;
res.coeffRef(0,2) = txz+twy;
res.coeffRef(1,0) = txy+twz;
res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
res.coeffRef(1,2) = tyz-twx;
res.coeffRef(2,0) = txz-twy;
res.coeffRef(2,1) = tyz+twx;
res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
return res;
}
/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b.
*
* \returns a reference to *this.
*
* Note that the two input vectors do \b not have to be normalized.
*/
template<typename Scalar>
template<typename Derived1, typename Derived2>
inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
Vector3 v0 = a.normalized();
Vector3 v1 = b.normalized();
Scalar c = v0.eigen2_dot(v1);
// if dot == 1, vectors are the same
if (ei_isApprox(c,Scalar(1)))
{
// set to identity
this->w() = 1; this->vec().setZero();
return *this;
}
// if dot == -1, vectors are opposites
if (ei_isApprox(c,Scalar(-1)))
{
this->vec() = v0.unitOrthogonal();
this->w() = 0;
return *this;
}
Vector3 axis = v0.cross(v1);
Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
Scalar invs = Scalar(1)/s;
this->vec() = axis * invs;
this->w() = s * Scalar(0.5);
return *this;
}
/** \returns the multiplicative inverse of \c *this
* Note that in most cases, i.e., if you simply want the opposite rotation,
* and/or the quaternion is normalized, then it is enough to use the conjugate.
*
* \sa Quaternion::conjugate()
*/
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
{
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
Scalar n2 = this->squaredNorm();
if (n2 > 0)
return Quaternion(conjugate().coeffs() / n2);
else
{
// return an invalid result to flag the error
return Quaternion(Coefficients::Zero());
}
}
/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
* if the quaternion is normalized.
* The conjugate of a quaternion represents the opposite rotation.
*
* \sa Quaternion::inverse()
*/
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
{
return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
}
/** \returns the angle (in radian) between two rotations
* \sa eigen2_dot()
*/
template <typename Scalar>
inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
{
double d = ei_abs(this->eigen2_dot(other));
if (d>=1.0)
return 0;
return Scalar(2) * std::acos(d);
}
/** \returns the spherical linear interpolation between the two quaternions
* \c *this and \a other at the parameter \a t
*/
template <typename Scalar>
Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
{
static const Scalar one = Scalar(1) - machine_epsilon<Scalar>();
Scalar d = this->eigen2_dot(other);
Scalar absD = ei_abs(d);
Scalar scale0;
Scalar scale1;
if (absD>=one)
{
scale0 = Scalar(1) - t;
scale1 = t;
}
else
{
// theta is the angle between the 2 quaternions
Scalar theta = std::acos(absD);
Scalar sinTheta = ei_sin(theta);
scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
scale1 = ei_sin( ( t * theta) ) / sinTheta;
if (d<0)
scale1 = -scale1;
}
return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
}
// set from a rotation matrix
template<typename Other>
struct ei_quaternion_assign_impl<Other,3,3>
{
typedef typename Other::Scalar Scalar;
static inline void run(Quaternion<Scalar>& q, const Other& mat)
{
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = mat.trace();
if (t > 0)
{
t = ei_sqrt(t + Scalar(1.0));
q.w() = Scalar(0.5)*t;
t = Scalar(0.5)/t;
q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
}
else
{
int i = 0;
if (mat.coeff(1,1) > mat.coeff(0,0))
i = 1;
if (mat.coeff(2,2) > mat.coeff(i,i))
i = 2;
int j = (i+1)%3;
int k = (j+1)%3;
t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
q.coeffs().coeffRef(i) = Scalar(0.5) * t;
t = Scalar(0.5)/t;
q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
}
}
};
// set from a vector of coefficients assumed to be a quaternion
template<typename Other>
struct ei_quaternion_assign_impl<Other,4,1>
{
typedef typename Other::Scalar Scalar;
static inline void run(Quaternion<Scalar>& q, const Other& vec)
{
q.coeffs() = vec;
}
};
} // end namespace Eigen

View File

@ -1,145 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Rotation2D
*
* \brief Represents a rotation/orientation in a 2 dimensional space.
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
*
* This class is equivalent to a single scalar representing a counter clock wise rotation
* as a single angle in radian. It provides some additional features such as the automatic
* conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
* interface to Quaternion in order to facilitate the writing of generic algorithms
* dealing with rotations.
*
* \sa class Quaternion, class Transform
*/
template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> >
{
typedef _Scalar Scalar;
};
template<typename _Scalar>
class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
{
typedef RotationBase<Rotation2D<_Scalar>,2> Base;
public:
using Base::operator*;
enum { Dim = 2 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,2,2> Matrix2;
protected:
Scalar m_angle;
public:
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
inline Rotation2D(Scalar a) : m_angle(a) {}
/** \returns the rotation angle */
inline Scalar angle() const { return m_angle; }
/** \returns a read-write reference to the rotation angle */
inline Scalar& angle() { return m_angle; }
/** \returns the inverse rotation */
inline Rotation2D inverse() const { return -m_angle; }
/** Concatenates two rotations */
inline Rotation2D operator*(const Rotation2D& other) const
{ return m_angle + other.m_angle; }
/** Concatenates two rotations */
inline Rotation2D& operator*=(const Rotation2D& other)
{ return m_angle += other.m_angle; return *this; }
/** Applies the rotation to a 2D vector */
Vector2 operator* (const Vector2& vec) const
{ return toRotationMatrix() * vec; }
template<typename Derived>
Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix2 toRotationMatrix(void) const;
/** \returns the spherical interpolation between \c *this and \a other using
* parameter \a t. It is in fact equivalent to a linear interpolation.
*/
inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
{ return m_angle * (1-t) + other.angle() * t; }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
{ return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
{
m_angle = Scalar(other.angle());
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return ei_isApprox(m_angle,other.m_angle, prec); }
};
/** \ingroup Geometry_Module
* single precision 2D rotation type */
typedef Rotation2D<float> Rotation2Df;
/** \ingroup Geometry_Module
* double precision 2D rotation type */
typedef Rotation2D<double> Rotation2Dd;
/** Set \c *this from a 2x2 rotation matrix \a mat.
* In other words, this function extract the rotation angle
* from the rotation matrix.
*/
template<typename Scalar>
template<typename Derived>
Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
return *this;
}
/** Constructs and \returns an equivalent 2x2 rotation matrix.
*/
template<typename Scalar>
typename Rotation2D<Scalar>::Matrix2
Rotation2D<Scalar>::toRotationMatrix(void) const
{
Scalar sinA = ei_sin(m_angle);
Scalar cosA = ei_cos(m_angle);
return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
}
} // end namespace Eigen

View File

@ -1,123 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
// this file aims to contains the various representations of rotation/orientation
// in 2D and 3D space excepted Matrix and Quaternion.
/** \class RotationBase
*
* \brief Common base class for compact rotation representations
*
* \param Derived is the derived type, i.e., a rotation type
* \param _Dim the dimension of the space
*/
template<typename Derived, int _Dim>
class RotationBase
{
public:
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef typename ei_traits<Derived>::Scalar Scalar;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
/** \returns an equivalent rotation matrix */
inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
/** \returns the inverse rotation */
inline Derived inverse() const { return derived().inverse(); }
/** \returns the concatenation of the rotation \c *this with a translation \a t */
inline Transform<Scalar,Dim> operator*(const Translation<Scalar,Dim>& t) const
{ return toRotationMatrix() * t; }
/** \returns the concatenation of the rotation \c *this with a scaling \a s */
inline RotationMatrixType operator*(const Scaling<Scalar,Dim>& s) const
{ return toRotationMatrix() * s; }
/** \returns the concatenation of the rotation \c *this with an affine transformation \a t */
inline Transform<Scalar,Dim> operator*(const Transform<Scalar,Dim>& t) const
{ return toRotationMatrix() * t; }
};
/** \geometry_module
*
* Constructs a Dim x Dim rotation matrix from the rotation \a r
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
*this = r.toRotationMatrix();
}
/** \geometry_module
*
* Set a Dim x Dim rotation matrix from the rotation \a r
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
return *this = r.toRotationMatrix();
}
/** \internal
*
* Helper function to return an arbitrary rotation object to a rotation matrix.
*
* \param Scalar the numeric type of the matrix coefficients
* \param Dim the dimension of the current space
*
* It returns a Dim x Dim fixed size matrix.
*
* Default specializations are provided for:
* - any scalar type (2D),
* - any matrix expression,
* - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
*
* Currently ei_toRotationMatrix is only used by Transform.
*
* \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
*/
template<typename Scalar, int Dim>
static inline Matrix<Scalar,2,2> ei_toRotationMatrix(const Scalar& s)
{
EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
return Rotation2D<Scalar>(s).toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
static inline Matrix<Scalar,Dim,Dim> ei_toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
{
return r.toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
static inline const MatrixBase<OtherDerived>& ei_toRotationMatrix(const MatrixBase<OtherDerived>& mat)
{
EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
YOU_MADE_A_PROGRAMMING_MISTAKE)
return mat;
}
} // end namespace Eigen

View File

@ -1,167 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Scaling
*
* \brief Represents a possibly non uniform scaling transformation
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a scaling transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* \sa class Translation, class Transform
*/
template<typename _Scalar, int _Dim>
class Scaling
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
/** dimension of the space */
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** corresponding vector type */
typedef Matrix<Scalar,Dim,1> VectorType;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding translation type */
typedef Translation<Scalar,Dim> TranslationType;
/** corresponding affine transformation type */
typedef Transform<Scalar,Dim> TransformType;
protected:
VectorType m_coeffs;
public:
/** Default constructor without initialization. */
Scaling() {}
/** Constructs and initialize a uniform scaling transformation */
explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); }
/** 2D only */
inline Scaling(const Scalar& sx, const Scalar& sy)
{
ei_assert(Dim==2);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
}
/** 3D only */
inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{
ei_assert(Dim==3);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
m_coeffs.z() = sz;
}
/** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {}
const VectorType& coeffs() const { return m_coeffs; }
VectorType& coeffs() { return m_coeffs; }
/** Concatenates two scaling */
inline Scaling operator* (const Scaling& other) const
{ return Scaling(coeffs().cwise() * other.coeffs()); }
/** Concatenates a scaling and a translation */
inline TransformType operator* (const TranslationType& t) const;
/** Concatenates a scaling and an affine transformation */
inline TransformType operator* (const TransformType& t) const;
/** Concatenates a scaling and a linear transformation matrix */
// TODO returns an expression
inline LinearMatrixType operator* (const LinearMatrixType& other) const
{ return coeffs().asDiagonal() * other; }
/** Concatenates a linear transformation matrix and a scaling */
// TODO returns an expression
friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s)
{ return other * s.coeffs().asDiagonal(); }
template<typename Derived>
inline LinearMatrixType operator*(const RotationBase<Derived,Dim>& r) const
{ return *this * r.toRotationMatrix(); }
/** Applies scaling to vector */
inline VectorType operator* (const VectorType& other) const
{ return coeffs().asDiagonal() * other; }
/** \returns the inverse scaling */
inline Scaling inverse() const
{ return Scaling(coeffs().cwise().inverse()); }
inline Scaling& operator=(const Scaling& other)
{
m_coeffs = other.m_coeffs;
return *this;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const
{ return typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit Scaling(const Scaling<OtherScalarType,Dim>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Scaling& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
};
/** \addtogroup Geometry_Module */
//@{
typedef Scaling<float, 2> Scaling2f;
typedef Scaling<double,2> Scaling2d;
typedef Scaling<float, 3> Scaling3f;
typedef Scaling<double,3> Scaling3d;
//@}
template<typename Scalar, int Dim>
inline typename Scaling<Scalar,Dim>::TransformType
Scaling<Scalar,Dim>::operator* (const TranslationType& t) const
{
TransformType res;
res.matrix().setZero();
res.linear().diagonal() = coeffs();
res.translation() = m_coeffs.cwise() * t.vector();
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar, int Dim>
inline typename Scaling<Scalar,Dim>::TransformType
Scaling<Scalar,Dim>::operator* (const TransformType& t) const
{
TransformType res = t;
res.prescale(m_coeffs);
return res;
}
} // end namespace Eigen

View File

@ -1,786 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
// Note that we have to pass Dim and HDim because it is not allowed to use a template
// parameter to define a template specialization. To be more precise, in the following
// specializations, it is not allowed to use Dim+1 instead of HDim.
template< typename Other,
int Dim,
int HDim,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct ei_transform_product_impl;
/** \geometry_module \ingroup Geometry_Module
*
* \class Transform
*
* \brief Represents an homogeneous transformation in a N dimensional space
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \param _Dim the dimension of the space
*
* The homography is internally represented and stored as a (Dim+1)^2 matrix which
* is available through the matrix() method.
*
* Conversion methods from/to Qt's QMatrix and QTransform are available if the
* preprocessor token EIGEN_QT_SUPPORT is defined.
*
* \sa class Matrix, class Quaternion
*/
template<typename _Scalar, int _Dim>
class Transform
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
enum {
Dim = _Dim, ///< space dimension in which the transformation holds
HDim = _Dim+1 ///< size of a respective homogeneous vector
};
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** type of the matrix used to represent the transformation */
typedef Matrix<Scalar,HDim,HDim> MatrixType;
/** type of the matrix used to represent the linear part of the transformation */
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** type of read/write reference to the linear part of the transformation */
typedef Block<MatrixType,Dim,Dim> LinearPart;
/** type of read/write reference to the linear part of the transformation */
typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart;
/** type of a vector */
typedef Matrix<Scalar,Dim,1> VectorType;
/** type of a read/write reference to the translation part of the rotation */
typedef Block<MatrixType,Dim,1> TranslationPart;
/** type of a read/write reference to the translation part of the rotation */
typedef const Block<const MatrixType,Dim,1> ConstTranslationPart;
/** corresponding translation type */
typedef Translation<Scalar,Dim> TranslationType;
/** corresponding scaling transformation type */
typedef Scaling<Scalar,Dim> ScalingType;
protected:
MatrixType m_matrix;
public:
/** Default constructor without initialization of the coefficients. */
inline Transform() { }
inline Transform(const Transform& other)
{
m_matrix = other.m_matrix;
}
inline explicit Transform(const TranslationType& t) { *this = t; }
inline explicit Transform(const ScalingType& s) { *this = s; }
template<typename Derived>
inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }
inline Transform& operator=(const Transform& other)
{ m_matrix = other.m_matrix; return *this; }
template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value
struct construct_from_matrix
{
static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
{
transform->matrix() = other;
}
};
template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true>
{
static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
{
transform->linear() = other;
transform->translation().setZero();
transform->matrix()(Dim,Dim) = Scalar(1);
transform->matrix().template block<1,Dim>(Dim,0).setZero();
}
};
/** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
template<typename OtherDerived>
inline explicit Transform(const MatrixBase<OtherDerived>& other)
{
construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other);
}
/** Set \c *this from a (Dim+1)^2 matrix. */
template<typename OtherDerived>
inline Transform& operator=(const MatrixBase<OtherDerived>& other)
{ m_matrix = other; return *this; }
#ifdef EIGEN_QT_SUPPORT
inline Transform(const QMatrix& other);
inline Transform& operator=(const QMatrix& other);
inline QMatrix toQMatrix(void) const;
inline Transform(const QTransform& other);
inline Transform& operator=(const QTransform& other);
inline QTransform toQTransform(void) const;
#endif
/** shortcut for m_matrix(row,col);
* \sa MatrixBase::operaror(int,int) const */
inline Scalar operator() (int row, int col) const { return m_matrix(row,col); }
/** shortcut for m_matrix(row,col);
* \sa MatrixBase::operaror(int,int) */
inline Scalar& operator() (int row, int col) { return m_matrix(row,col); }
/** \returns a read-only expression of the transformation matrix */
inline const MatrixType& matrix() const { return m_matrix; }
/** \returns a writable expression of the transformation matrix */
inline MatrixType& matrix() { return m_matrix; }
/** \returns a read-only expression of the linear (linear) part of the transformation */
inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a writable expression of the linear (linear) part of the transformation */
inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a read-only expression of the translation vector of the transformation */
inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
/** \returns a writable expression of the translation vector of the transformation */
inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
/** \returns an expression of the product between the transform \c *this and a matrix expression \a other
*
* The right hand side \a other might be either:
* \li a vector of size Dim,
* \li an homogeneous vector of size Dim+1,
* \li a transformation matrix of size Dim+1 x Dim+1.
*/
// note: this function is defined here because some compilers cannot find the respective declaration
template<typename OtherDerived>
inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
operator * (const MatrixBase<OtherDerived> &other) const
{ return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }
/** \returns the product expression of a transformation matrix \a a times a transform \a b
* The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */
template<typename OtherDerived>
friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type
operator * (const MatrixBase<OtherDerived> &a, const Transform &b)
{ return a.derived() * b.matrix(); }
/** Contatenates two transformations */
inline const Transform
operator * (const Transform& other) const
{ return Transform(m_matrix * other.matrix()); }
/** \sa MatrixBase::setIdentity() */
void setIdentity() { m_matrix.setIdentity(); }
static const typename MatrixType::IdentityReturnType Identity()
{
return MatrixType::Identity();
}
template<typename OtherDerived>
inline Transform& scale(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
inline Transform& prescale(const MatrixBase<OtherDerived> &other);
inline Transform& scale(Scalar s);
inline Transform& prescale(Scalar s);
template<typename OtherDerived>
inline Transform& translate(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
template<typename RotationType>
inline Transform& rotate(const RotationType& rotation);
template<typename RotationType>
inline Transform& prerotate(const RotationType& rotation);
Transform& shear(Scalar sx, Scalar sy);
Transform& preshear(Scalar sx, Scalar sy);
inline Transform& operator=(const TranslationType& t);
inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
inline Transform operator*(const TranslationType& t) const;
inline Transform& operator=(const ScalingType& t);
inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
inline Transform operator*(const ScalingType& s) const;
friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
{
Transform res = t;
res.matrix().row(Dim) = t.matrix().row(Dim);
res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy();
return res;
}
template<typename Derived>
inline Transform& operator=(const RotationBase<Derived,Dim>& r);
template<typename Derived>
inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
template<typename Derived>
inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
LinearMatrixType rotation() const;
template<typename RotationMatrixType, typename ScalingMatrixType>
void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
template<typename ScalingMatrixType, typename RotationMatrixType>
void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
inline const MatrixType inverse(TransformTraits traits = Affine) const;
/** \returns a const pointer to the column major internal matrix */
const Scalar* data() const { return m_matrix.data(); }
/** \returns a non-const pointer to the column major internal matrix */
Scalar* data() { return m_matrix.data(); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
{ return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit Transform(const Transform<OtherScalarType,Dim>& other)
{ m_matrix = other.matrix().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return m_matrix.isApprox(other.m_matrix, prec); }
#ifdef EIGEN_TRANSFORM_PLUGIN
#include EIGEN_TRANSFORM_PLUGIN
#endif
protected:
};
/** \ingroup Geometry_Module */
typedef Transform<float,2> Transform2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3> Transform3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2> Transform2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3> Transform3d;
/**************************
*** Optional QT support ***
**************************/
#ifdef EIGEN_QT_SUPPORT
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>::Transform(const QMatrix& other)
{
*this = other;
}
/** Set \c *this from a QMatrix assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
{
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy(),
0, 0, 1;
return *this;
}
/** \returns a QMatrix from \c *this assuming the dimension is 2.
*
* \warning this convertion might loss data if \c *this is not affine
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
{
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
m_matrix.coeff(0,1), m_matrix.coeff(1,1),
m_matrix.coeff(0,2), m_matrix.coeff(1,2));
}
/** Initialises \c *this from a QTransform assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>::Transform(const QTransform& other)
{
*this = other;
}
/** Set \c *this from a QTransform assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other)
{
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy(),
other.m13(), other.m23(), other.m33();
return *this;
}
/** \returns a QTransform from \c *this assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
QTransform Transform<Scalar,Dim>::toQTransform(void) const
{
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
}
#endif
/*********************
*** Procedural API ***
*********************/
/** Applies on the right the non uniform scale transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \sa prescale()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
linear() = (linear() * other.asDiagonal()).lazy();
return *this;
}
/** Applies on the right a uniform scale of a factor \a c to \c *this
* and returns a reference to \c *this.
* \sa prescale(Scalar)
*/
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s)
{
linear() *= s;
return *this;
}
/** Applies on the left the non uniform scale transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \sa scale()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
return *this;
}
/** Applies on the left a uniform scale of a factor \a c to \c *this
* and returns a reference to \c *this.
* \sa scale(Scalar)
*/
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s)
{
m_matrix.template corner<Dim,HDim>(TopLeft) *= s;
return *this;
}
/** Applies on the right the translation matrix represented by the vector \a other
* to \c *this and returns a reference to \c *this.
* \sa pretranslate()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
translation() += linear() * other;
return *this;
}
/** Applies on the left the translation matrix represented by the vector \a other
* to \c *this and returns a reference to \c *this.
* \sa translate()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
translation() += other;
return *this;
}
/** Applies on the right the rotation represented by the rotation \a rotation
* to \c *this and returns a reference to \c *this.
*
* The template parameter \a RotationType is the type of the rotation which
* must be known by ei_toRotationMatrix<>.
*
* Natively supported types includes:
* - any scalar (2D),
* - a Dim x Dim matrix expression,
* - a Quaternion (3D),
* - a AngleAxis (3D)
*
* This mechanism is easily extendable to support user types such as Euler angles,
* or a pair of Quaternion for 4D rotations.
*
* \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
*/
template<typename Scalar, int Dim>
template<typename RotationType>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::rotate(const RotationType& rotation)
{
linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
return *this;
}
/** Applies on the left the rotation represented by the rotation \a rotation
* to \c *this and returns a reference to \c *this.
*
* See rotate() for further details.
*
* \sa rotate()
*/
template<typename Scalar, int Dim>
template<typename RotationType>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
{
m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
* m_matrix.template block<Dim,HDim>(0,0);
return *this;
}
/** Applies on the right the shear transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \warning 2D only.
* \sa preshear()
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
{
EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
VectorType tmp = linear().col(0)*sy + linear().col(1);
linear() << linear().col(0) + linear().col(1)*sx, tmp;
return *this;
}
/** Applies on the left the shear transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \warning 2D only.
* \sa shear()
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
{
EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
return *this;
}
/******************************************************
*** Scaling, Translation and Rotation compatibility ***
******************************************************/
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
{
linear().setIdentity();
translation() = t.vector();
m_matrix.template block<1,Dim>(Dim,0).setZero();
m_matrix(Dim,Dim) = Scalar(1);
return *this;
}
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
{
Transform res = *this;
res.translate(t.vector());
return res;
}
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
{
m_matrix.setZero();
linear().diagonal() = s.coeffs();
m_matrix.coeffRef(Dim,Dim) = Scalar(1);
return *this;
}
template<typename Scalar, int Dim>
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
{
Transform res = *this;
res.scale(s.coeffs());
return res;
}
template<typename Scalar, int Dim>
template<typename Derived>
inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r)
{
linear() = ei_toRotationMatrix<Scalar,Dim>(r);
translation().setZero();
m_matrix.template block<1,Dim>(Dim,0).setZero();
m_matrix.coeffRef(Dim,Dim) = Scalar(1);
return *this;
}
template<typename Scalar, int Dim>
template<typename Derived>
inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const
{
Transform res = *this;
res.rotate(r.derived());
return res;
}
/************************
*** Special functions ***
************************/
/** \returns the rotation part of the transformation
* \nonstableyet
*
* \svd_module
*
* \sa computeRotationScaling(), computeScalingRotation(), class SVD
*/
template<typename Scalar, int Dim>
typename Transform<Scalar,Dim>::LinearMatrixType
Transform<Scalar,Dim>::rotation() const
{
LinearMatrixType result;
computeRotationScaling(&result, (LinearMatrixType*)0);
return result;
}
/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
* not necessarily positive.
*
* If either pointer is zero, the corresponding computation is skipped.
*
* \nonstableyet
*
* \svd_module
*
* \sa computeScalingRotation(), rotation(), class SVD
*/
template<typename Scalar, int Dim>
template<typename RotationMatrixType, typename ScalingMatrixType>
void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
{
JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
Matrix<Scalar, Dim, 1> sv(svd.singularValues());
sv.coeffRef(0) *= x;
if(scaling)
{
scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
}
if(rotation)
{
LinearMatrixType m(svd.matrixU());
m.col(0) /= x;
rotation->noalias() = m * svd.matrixV().adjoint();
}
}
/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
* not necessarily positive.
*
* If either pointer is zero, the corresponding computation is skipped.
*
* \nonstableyet
*
* \svd_module
*
* \sa computeRotationScaling(), rotation(), class SVD
*/
template<typename Scalar, int Dim>
template<typename ScalingMatrixType, typename RotationMatrixType>
void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
{
JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
Matrix<Scalar, Dim, 1> sv(svd.singularValues());
sv.coeffRef(0) *= x;
if(scaling)
{
scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint();
}
if(rotation)
{
LinearMatrixType m(svd.matrixU());
m.col(0) /= x;
rotation->noalias() = m * svd.matrixV().adjoint();
}
}
/** Convenient method to set \c *this from a position, orientation and scale
* of a 3D object.
*/
template<typename Scalar, int Dim>
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
{
linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
linear() *= scale.asDiagonal();
translation() = position;
m_matrix.template block<1,Dim>(Dim,0).setZero();
m_matrix(Dim,Dim) = Scalar(1);
return *this;
}
/** \nonstableyet
*
* \returns the inverse transformation matrix according to some given knowledge
* on \c *this.
*
* \param traits allows to optimize the inversion process when the transformion
* is known to be not a general transformation. The possible values are:
* - Projective if the transformation is not necessarily affine, i.e., if the
* last row is not guaranteed to be [0 ... 0 1]
* - Affine is the default, the last row is assumed to be [0 ... 0 1]
* - Isometry if the transformation is only a concatenations of translations
* and rotations.
*
* \warning unless \a traits is always set to NoShear or NoScaling, this function
* requires the generic inverse method of MatrixBase defined in the LU module. If
* you forget to include this module, then you will get hard to debug linking errors.
*
* \sa MatrixBase::inverse()
*/
template<typename Scalar, int Dim>
inline const typename Transform<Scalar,Dim>::MatrixType
Transform<Scalar,Dim>::inverse(TransformTraits traits) const
{
if (traits == Projective)
{
return m_matrix.inverse();
}
else
{
MatrixType res;
if (traits == Affine)
{
res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
}
else if (traits == Isometry)
{
res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
}
else
{
ei_assert("invalid traits value in Transform::inverse()");
}
// translation and remaining parts
res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
res.template corner<1,Dim>(BottomLeft).setZero();
res.coeffRef(Dim,Dim) = Scalar(1);
return res;
}
}
/*****************************************************
*** Specializations of operator* with a MatrixBase ***
*****************************************************/
template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
{
typedef Transform<typename Other::Scalar,Dim> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return tr.matrix() * other; }
};
template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim>
{
typedef Transform<typename Other::Scalar,Dim> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef TransformType ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{
TransformType res;
res.translation() = tr.translation();
res.matrix().row(Dim) = tr.matrix().row(Dim);
res.linear() = (tr.linear() * other).lazy();
return res;
}
};
template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
{
typedef Transform<typename Other::Scalar,Dim> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return tr.matrix() * other; }
};
template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
{
typedef typename Other::Scalar Scalar;
typedef Transform<Scalar,Dim> TransformType;
typedef Matrix<Scalar,Dim,1> ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return ((tr.linear() * other) + tr.translation())
* (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
};
} // end namespace Eigen

View File

@ -1,184 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Translation
*
* \brief Represents a translation transformation
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
* \param _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* \sa class Scaling, class Transform
*/
template<typename _Scalar, int _Dim>
class Translation
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
/** dimension of the space */
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** corresponding vector type */
typedef Matrix<Scalar,Dim,1> VectorType;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding scaling transformation type */
typedef Scaling<Scalar,Dim> ScalingType;
/** corresponding affine transformation type */
typedef Transform<Scalar,Dim> TransformType;
protected:
VectorType m_coeffs;
public:
/** Default constructor without initialization. */
Translation() {}
/** */
inline Translation(const Scalar& sx, const Scalar& sy)
{
ei_assert(Dim==2);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
}
/** */
inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{
ei_assert(Dim==3);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
m_coeffs.z() = sz;
}
/** Constructs and initialize the scaling transformation from a vector of scaling coefficients */
explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
const VectorType& vector() const { return m_coeffs; }
VectorType& vector() { return m_coeffs; }
/** Concatenates two translation */
inline Translation operator* (const Translation& other) const
{ return Translation(m_coeffs + other.m_coeffs); }
/** Concatenates a translation and a scaling */
inline TransformType operator* (const ScalingType& other) const;
/** Concatenates a translation and a linear transformation */
inline TransformType operator* (const LinearMatrixType& linear) const;
template<typename Derived>
inline TransformType operator*(const RotationBase<Derived,Dim>& r) const
{ return *this * r.toRotationMatrix(); }
/** Concatenates a linear transformation and a translation */
// its a nightmare to define a templated friend function outside its declaration
friend inline TransformType operator* (const LinearMatrixType& linear, const Translation& t)
{
TransformType res;
res.matrix().setZero();
res.linear() = linear;
res.translation() = linear * t.m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
/** Concatenates a translation and an affine transformation */
inline TransformType operator* (const TransformType& t) const;
/** Applies translation to vector */
inline VectorType operator* (const VectorType& other) const
{ return m_coeffs + other; }
/** \returns the inverse translation (opposite) */
Translation inverse() const { return Translation(-m_coeffs); }
Translation& operator=(const Translation& other)
{
m_coeffs = other.m_coeffs;
return *this;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
{ return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
{ m_coeffs = other.vector().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
};
/** \addtogroup Geometry_Module */
//@{
typedef Translation<float, 2> Translation2f;
typedef Translation<double,2> Translation2d;
typedef Translation<float, 3> Translation3f;
typedef Translation<double,3> Translation3d;
//@}
template<typename Scalar, int Dim>
inline typename Translation<Scalar,Dim>::TransformType
Translation<Scalar,Dim>::operator* (const ScalingType& other) const
{
TransformType res;
res.matrix().setZero();
res.linear().diagonal() = other.coeffs();
res.translation() = m_coeffs;
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar, int Dim>
inline typename Translation<Scalar,Dim>::TransformType
Translation<Scalar,Dim>::operator* (const LinearMatrixType& linear) const
{
TransformType res;
res.matrix().setZero();
res.linear() = linear;
res.translation() = m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar, int Dim>
inline typename Translation<Scalar,Dim>::TransformType
Translation<Scalar,Dim>::operator* (const TransformType& t) const
{
TransformType res = t;
res.pretranslate(m_coeffs);
return res;
}
} // end namespace Eigen

View File

@ -1,120 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2_LU_H
#define EIGEN2_LU_H
namespace Eigen {
template<typename MatrixType>
class LU : public FullPivLU<MatrixType>
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> IntColVectorType;
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> ColVectorType;
typedef Matrix<typename MatrixType::Scalar,
MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" is the number of cols of the original matrix
// so that the product "matrix * kernel = zero" makes sense
Dynamic, // we don't know at compile-time the dimension of the kernel
MatrixType::Options,
MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, whose dimension is the number
// of columns of the original matrix
> KernelResultType;
typedef Matrix<typename MatrixType::Scalar,
MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose dimension is the number
// of rows of the original matrix
Dynamic, // we don't know at compile time the dimension of the image (the rank)
MatrixType::Options,
MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
> ImageResultType;
typedef FullPivLU<MatrixType> Base;
template<typename T>
explicit LU(const T& t) : Base(t), m_originalMatrix(t) {}
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = static_cast<const Base*>(this)->solve(b);
return true;
}
template<typename ResultType>
inline void computeInverse(ResultType *result) const
{
solve(MatrixType::Identity(this->rows(), this->cols()), result);
}
template<typename KernelMatrixType>
void computeKernel(KernelMatrixType *result) const
{
*result = static_cast<const Base*>(this)->kernel();
}
template<typename ImageMatrixType>
void computeImage(ImageMatrixType *result) const
{
*result = static_cast<const Base*>(this)->image(m_originalMatrix);
}
const ImageResultType image() const
{
return static_cast<const Base*>(this)->image(m_originalMatrix);
}
const MatrixType& m_originalMatrix;
};
#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
/** \lu_module
*
* Synonym of partialPivLu().
*
* \return the partial-pivoting LU decomposition of \c *this.
*
* \sa class PartialPivLU
*/
template<typename Derived>
inline const LU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::lu() const
{
return LU<PlainObject>(eval());
}
#endif
#ifdef EIGEN2_SUPPORT
/** \lu_module
*
* Synonym of partialPivLu().
*
* \return the partial-pivoting LU decomposition of \c *this.
*
* \sa class PartialPivLU
*/
template<typename Derived>
inline const LU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::eigen2_lu() const
{
return LU<PlainObject>(eval());
}
#endif
} // end namespace Eigen
#endif // EIGEN2_LU_H

View File

@ -1,71 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LAZY_H
#define EIGEN_LAZY_H
namespace Eigen {
/** \deprecated it is only used by lazy() which is deprecated
*
* \returns an expression of *this with added flags
*
* Example: \include MatrixBase_marked.cpp
* Output: \verbinclude MatrixBase_marked.out
*
* \sa class Flagged, extract(), part()
*/
template<typename Derived>
template<unsigned int Added>
inline const Flagged<Derived, Added, 0>
MatrixBase<Derived>::marked() const
{
return derived();
}
/** \deprecated use MatrixBase::noalias()
*
* \returns an expression of *this with the EvalBeforeAssigningBit flag removed.
*
* Example: \include MatrixBase_lazy.cpp
* Output: \verbinclude MatrixBase_lazy.out
*
* \sa class Flagged, marked()
*/
template<typename Derived>
inline const Flagged<Derived, 0, EvalBeforeAssigningBit>
MatrixBase<Derived>::lazy() const
{
return derived();
}
/** \internal
* Overloaded to perform an efficient C += (A*B).lazy() */
template<typename Derived>
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& MatrixBase<Derived>::operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other)
{
other._expression().derived().addTo(derived()); return derived();
}
/** \internal
* Overloaded to perform an efficient C -= (A*B).lazy() */
template<typename Derived>
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& MatrixBase<Derived>::operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other)
{
other._expression().derived().subTo(derived()); return derived();
}
} // end namespace Eigen
#endif // EIGEN_LAZY_H

View File

@ -1,170 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2_LEASTSQUARES_H
#define EIGEN2_LEASTSQUARES_H
namespace Eigen {
/** \ingroup LeastSquares_Module
*
* \leastsquares_module
*
* For a set of points, this function tries to express
* one of the coords as a linear (affine) function of the other coords.
*
* This is best explained by an example. This function works in full
* generality, for points in a space of arbitrary dimension, and also over
* the complex numbers, but for this example we will work in dimension 3
* over the real numbers (doubles).
*
* So let us work with the following set of 5 points given by their
* \f$(x,y,z)\f$ coordinates:
* @code
Vector3d points[5];
points[0] = Vector3d( 3.02, 6.89, -4.32 );
points[1] = Vector3d( 2.01, 5.39, -3.79 );
points[2] = Vector3d( 2.41, 6.01, -4.01 );
points[3] = Vector3d( 2.09, 5.55, -3.86 );
points[4] = Vector3d( 2.58, 6.32, -4.10 );
* @endcode
* Suppose that we want to express the second coordinate (\f$y\f$) as a linear
* expression in \f$x\f$ and \f$z\f$, that is,
* \f[ y=ax+bz+c \f]
* for some constants \f$a,b,c\f$. Thus, we want to find the best possible
* constants \f$a,b,c\f$ so that the plane of equation \f$y=ax+bz+c\f$ fits
* best the five above points. To do that, call this function as follows:
* @code
Vector3d coeffs; // will store the coefficients a, b, c
linearRegression(
5,
&points,
&coeffs,
1 // the coord to express as a function of
// the other ones. 0 means x, 1 means y, 2 means z.
);
* @endcode
* Now the vector \a coeffs is approximately
* \f$( 0.495 , -1.927 , -2.906 )\f$.
* Thus, we get \f$a=0.495, b = -1.927, c = -2.906\f$. Let us check for
* instance how near points[0] is from the plane of equation \f$y=ax+bz+c\f$.
* Looking at the coords of points[0], we see that:
* \f[ax+bz+c = 0.495 * 3.02 + (-1.927) * (-4.32) + (-2.906) = 6.91.\f]
* On the other hand, we have \f$y=6.89\f$. We see that the values
* \f$6.91\f$ and \f$6.89\f$
* are near, so points[0] is very near the plane of equation \f$y=ax+bz+c\f$.
*
* Let's now describe precisely the parameters:
* @param numPoints the number of points
* @param points the array of pointers to the points on which to perform the linear regression
* @param result pointer to the vector in which to store the result.
This vector must be of the same type and size as the
data points. The meaning of its coords is as follows.
For brevity, let \f$n=Size\f$,
\f$r_i=result[i]\f$,
and \f$f=funcOfOthers\f$. Denote by
\f$x_0,\ldots,x_{n-1}\f$
the n coordinates in the n-dimensional space.
Then the resulting equation is:
\f[ x_f = r_0 x_0 + \cdots + r_{f-1}x_{f-1}
+ r_{f+1}x_{f+1} + \cdots + r_{n-1}x_{n-1} + r_n. \f]
* @param funcOfOthers Determines which coord to express as a function of the
others. Coords are numbered starting from 0, so that a
value of 0 means \f$x\f$, 1 means \f$y\f$,
2 means \f$z\f$, ...
*
* \sa fitHyperplane()
*/
template<typename VectorType>
void linearRegression(int numPoints,
VectorType **points,
VectorType *result,
int funcOfOthers )
{
typedef typename VectorType::Scalar Scalar;
typedef Hyperplane<Scalar, VectorType::SizeAtCompileTime> HyperplaneType;
const int size = points[0]->size();
result->resize(size);
HyperplaneType h(size);
fitHyperplane(numPoints, points, &h);
for(int i = 0; i < funcOfOthers; i++)
result->coeffRef(i) = - h.coeffs()[i] / h.coeffs()[funcOfOthers];
for(int i = funcOfOthers; i < size; i++)
result->coeffRef(i) = - h.coeffs()[i+1] / h.coeffs()[funcOfOthers];
}
/** \ingroup LeastSquares_Module
*
* \leastsquares_module
*
* This function is quite similar to linearRegression(), so we refer to the
* documentation of this function and only list here the differences.
*
* The main difference from linearRegression() is that this function doesn't
* take a \a funcOfOthers argument. Instead, it finds a general equation
* of the form
* \f[ r_0 x_0 + \cdots + r_{n-1}x_{n-1} + r_n = 0, \f]
* where \f$n=Size\f$, \f$r_i=retCoefficients[i]\f$, and we denote by
* \f$x_0,\ldots,x_{n-1}\f$ the n coordinates in the n-dimensional space.
*
* Thus, the vector \a retCoefficients has size \f$n+1\f$, which is another
* difference from linearRegression().
*
* In practice, this function performs an hyper-plane fit in a total least square sense
* via the following steps:
* 1 - center the data to the mean
* 2 - compute the covariance matrix
* 3 - pick the eigenvector corresponding to the smallest eigenvalue of the covariance matrix
* The ratio of the smallest eigenvalue and the second one gives us a hint about the relevance
* of the solution. This value is optionally returned in \a soundness.
*
* \sa linearRegression()
*/
template<typename VectorType, typename HyperplaneType>
void fitHyperplane(int numPoints,
VectorType **points,
HyperplaneType *result,
typename NumTraits<typename VectorType::Scalar>::Real* soundness = 0)
{
typedef typename VectorType::Scalar Scalar;
typedef Matrix<Scalar,VectorType::SizeAtCompileTime,VectorType::SizeAtCompileTime> CovMatrixType;
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType)
ei_assert(numPoints >= 1);
int size = points[0]->size();
ei_assert(size+1 == result->coeffs().size());
// compute the mean of the data
VectorType mean = VectorType::Zero(size);
for(int i = 0; i < numPoints; ++i)
mean += *(points[i]);
mean /= numPoints;
// compute the covariance matrix
CovMatrixType covMat = CovMatrixType::Zero(size, size);
VectorType remean = VectorType::Zero(size);
for(int i = 0; i < numPoints; ++i)
{
VectorType diff = (*(points[i]) - mean).conjugate();
covMat += diff * diff.adjoint();
}
// now we just have to pick the eigen vector with smallest eigen value
SelfAdjointEigenSolver<CovMatrixType> eig(covMat);
result->normal() = eig.eigenvectors().col(0);
if (soundness)
*soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1);
// let's compute the constant coefficient such that the
// plane pass trough the mean point:
result->offset() = - (result->normal().cwise()* mean).sum();
}
} // end namespace Eigen
#endif // EIGEN2_LEASTSQUARES_H

View File

@ -1,20 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2_MACROS_H
#define EIGEN2_MACROS_H
#define ei_assert eigen_assert
#define ei_internal_assert eigen_internal_assert
#define EIGEN_ALIGN_128 EIGEN_ALIGN16
#define EIGEN_ARCH_WANTS_ALIGNMENT EIGEN_ALIGN_STATICALLY
#endif // EIGEN2_MACROS_H

View File

@ -1,57 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2_MATH_FUNCTIONS_H
#define EIGEN2_MATH_FUNCTIONS_H
namespace Eigen {
template<typename T> inline typename NumTraits<T>::Real ei_real(const T& x) { return numext::real(x); }
template<typename T> inline typename NumTraits<T>::Real ei_imag(const T& x) { return numext::imag(x); }
template<typename T> inline T ei_conj(const T& x) { return numext::conj(x); }
template<typename T> inline typename NumTraits<T>::Real ei_abs (const T& x) { using std::abs; return abs(x); }
template<typename T> inline typename NumTraits<T>::Real ei_abs2(const T& x) { return numext::abs2(x); }
template<typename T> inline T ei_sqrt(const T& x) { using std::sqrt; return sqrt(x); }
template<typename T> inline T ei_exp (const T& x) { using std::exp; return exp(x); }
template<typename T> inline T ei_log (const T& x) { using std::log; return log(x); }
template<typename T> inline T ei_sin (const T& x) { using std::sin; return sin(x); }
template<typename T> inline T ei_cos (const T& x) { using std::cos; return cos(x); }
template<typename T> inline T ei_atan2(const T& x,const T& y) { using std::atan2; return atan2(x,y); }
template<typename T> inline T ei_pow (const T& x,const T& y) { return numext::pow(x,y); }
template<typename T> inline T ei_random () { return internal::random<T>(); }
template<typename T> inline T ei_random (const T& x, const T& y) { return internal::random(x, y); }
template<typename T> inline T precision () { return NumTraits<T>::dummy_precision(); }
template<typename T> inline T machine_epsilon () { return NumTraits<T>::epsilon(); }
template<typename Scalar, typename OtherScalar>
inline bool ei_isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
return internal::isMuchSmallerThan(x, y, precision);
}
template<typename Scalar>
inline bool ei_isApprox(const Scalar& x, const Scalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
return internal::isApprox(x, y, precision);
}
template<typename Scalar>
inline bool ei_isApproxOrLessThan(const Scalar& x, const Scalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
{
return internal::isApproxOrLessThan(x, y, precision);
}
} // end namespace Eigen
#endif // EIGEN2_MATH_FUNCTIONS_H

View File

@ -1,45 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2_MEMORY_H
#define EIGEN2_MEMORY_H
namespace Eigen {
inline void* ei_aligned_malloc(size_t size) { return internal::aligned_malloc(size); }
inline void ei_aligned_free(void *ptr) { internal::aligned_free(ptr); }
inline void* ei_aligned_realloc(void *ptr, size_t new_size, size_t old_size) { return internal::aligned_realloc(ptr, new_size, old_size); }
inline void* ei_handmade_aligned_malloc(size_t size) { return internal::handmade_aligned_malloc(size); }
inline void ei_handmade_aligned_free(void *ptr) { internal::handmade_aligned_free(ptr); }
template<bool Align> inline void* ei_conditional_aligned_malloc(size_t size)
{
return internal::conditional_aligned_malloc<Align>(size);
}
template<bool Align> inline void ei_conditional_aligned_free(void *ptr)
{
internal::conditional_aligned_free<Align>(ptr);
}
template<bool Align> inline void* ei_conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
{
return internal::conditional_aligned_realloc<Align>(ptr, new_size, old_size);
}
template<typename T> inline T* ei_aligned_new(size_t size)
{
return internal::aligned_new<T>(size);
}
template<typename T> inline void ei_aligned_delete(T *ptr, size_t size)
{
return internal::aligned_delete(ptr, size);
}
} // end namespace Eigen
#endif // EIGEN2_MACROS_H

View File

@ -1,75 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2_META_H
#define EIGEN2_META_H
namespace Eigen {
template<typename T>
struct ei_traits : internal::traits<T>
{};
struct ei_meta_true { enum { ret = 1 }; };
struct ei_meta_false { enum { ret = 0 }; };
template<bool Condition, typename Then, typename Else>
struct ei_meta_if { typedef Then ret; };
template<typename Then, typename Else>
struct ei_meta_if <false, Then, Else> { typedef Else ret; };
template<typename T, typename U> struct ei_is_same_type { enum { ret = 0 }; };
template<typename T> struct ei_is_same_type<T,T> { enum { ret = 1 }; };
template<typename T> struct ei_unref { typedef T type; };
template<typename T> struct ei_unref<T&> { typedef T type; };
template<typename T> struct ei_unpointer { typedef T type; };
template<typename T> struct ei_unpointer<T*> { typedef T type; };
template<typename T> struct ei_unpointer<T*const> { typedef T type; };
template<typename T> struct ei_unconst { typedef T type; };
template<typename T> struct ei_unconst<const T> { typedef T type; };
template<typename T> struct ei_unconst<T const &> { typedef T & type; };
template<typename T> struct ei_unconst<T const *> { typedef T * type; };
template<typename T> struct ei_cleantype { typedef T type; };
template<typename T> struct ei_cleantype<const T> { typedef typename ei_cleantype<T>::type type; };
template<typename T> struct ei_cleantype<const T&> { typedef typename ei_cleantype<T>::type type; };
template<typename T> struct ei_cleantype<T&> { typedef typename ei_cleantype<T>::type type; };
template<typename T> struct ei_cleantype<const T*> { typedef typename ei_cleantype<T>::type type; };
template<typename T> struct ei_cleantype<T*> { typedef typename ei_cleantype<T>::type type; };
/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
* Usage example: \code ei_meta_sqrt<1023>::ret \endcode
*/
template<int Y,
int InfX = 0,
int SupX = ((Y==1) ? 1 : Y/2),
bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
// use ?: instead of || just to shut up a stupid gcc 4.3 warning
class ei_meta_sqrt
{
enum {
MidX = (InfX+SupX)/2,
TakeInf = MidX*MidX > Y ? 1 : 0,
NewInf = int(TakeInf) ? InfX : int(MidX),
NewSup = int(TakeInf) ? int(MidX) : SupX
};
public:
enum { ret = ei_meta_sqrt<Y,NewInf,NewSup>::ret };
};
template<int Y, int InfX, int SupX>
class ei_meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
} // end namespace Eigen
#endif // EIGEN2_META_H

View File

@ -1,117 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MINOR_H
#define EIGEN_MINOR_H
namespace Eigen {
/**
* \class Minor
*
* \brief Expression of a minor
*
* \param MatrixType the type of the object in which we are taking a minor
*
* This class represents an expression of a minor. It is the return
* type of MatrixBase::minor() and most of the time this is the only way it
* is used.
*
* \sa MatrixBase::minor()
*/
namespace internal {
template<typename MatrixType>
struct traits<Minor<MatrixType> >
: traits<MatrixType>
{
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
typedef typename MatrixType::StorageKind StorageKind;
enum {
RowsAtCompileTime = (MatrixType::RowsAtCompileTime != Dynamic) ?
int(MatrixType::RowsAtCompileTime) - 1 : Dynamic,
ColsAtCompileTime = (MatrixType::ColsAtCompileTime != Dynamic) ?
int(MatrixType::ColsAtCompileTime) - 1 : Dynamic,
MaxRowsAtCompileTime = (MatrixType::MaxRowsAtCompileTime != Dynamic) ?
int(MatrixType::MaxRowsAtCompileTime) - 1 : Dynamic,
MaxColsAtCompileTime = (MatrixType::MaxColsAtCompileTime != Dynamic) ?
int(MatrixType::MaxColsAtCompileTime) - 1 : Dynamic,
Flags = _MatrixTypeNested::Flags & (HereditaryBits | LvalueBit),
CoeffReadCost = _MatrixTypeNested::CoeffReadCost // minor is used typically on tiny matrices,
// where loops are unrolled and the 'if' evaluates at compile time
};
};
}
template<typename MatrixType> class Minor
: public MatrixBase<Minor<MatrixType> >
{
public:
typedef MatrixBase<Minor> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Minor)
inline Minor(const MatrixType& matrix,
Index row, Index col)
: m_matrix(matrix), m_row(row), m_col(col)
{
eigen_assert(row >= 0 && row < matrix.rows()
&& col >= 0 && col < matrix.cols());
}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Minor)
inline Index rows() const { return m_matrix.rows() - 1; }
inline Index cols() const { return m_matrix.cols() - 1; }
inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.const_cast_derived().coeffRef(row + (row >= m_row), col + (col >= m_col));
}
inline const Scalar coeff(Index row, Index col) const
{
return m_matrix.coeff(row + (row >= m_row), col + (col >= m_col));
}
protected:
const typename MatrixType::Nested m_matrix;
const Index m_row, m_col;
};
/**
* \return an expression of the (\a row, \a col)-minor of *this,
* i.e. an expression constructed from *this by removing the specified
* row and column.
*
* Example: \include MatrixBase_minor.cpp
* Output: \verbinclude MatrixBase_minor.out
*
* \sa class Minor
*/
template<typename Derived>
inline Minor<Derived>
MatrixBase<Derived>::minor(Index row, Index col)
{
return Minor<Derived>(derived(), row, col);
}
/**
* This is the const version of minor(). */
template<typename Derived>
inline const Minor<Derived>
MatrixBase<Derived>::minor(Index row, Index col) const
{
return Minor<Derived>(derived(), row, col);
}
} // end namespace Eigen
#endif // EIGEN_MINOR_H

View File

@ -1,67 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2_QR_H
#define EIGEN2_QR_H
namespace Eigen {
template<typename MatrixType>
class QR : public HouseholderQR<MatrixType>
{
public:
typedef HouseholderQR<MatrixType> Base;
typedef Block<const MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
QR() : Base() {}
template<typename T>
explicit QR(const T& t) : Base(t) {}
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = static_cast<const Base*>(this)->solve(b);
return true;
}
MatrixType matrixQ(void) const {
MatrixType ret = MatrixType::Identity(this->rows(), this->cols());
ret = this->householderQ() * ret;
return ret;
}
bool isFullRank() const {
return true;
}
const TriangularView<MatrixRBlockType, UpperTriangular>
matrixR(void) const
{
int cols = this->cols();
return MatrixRBlockType(this->matrixQR(), 0, 0, cols, cols).template triangularView<UpperTriangular>();
}
};
/** \return the QR decomposition of \c *this.
*
* \sa class QR
*/
template<typename Derived>
const QR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::qr() const
{
return QR<PlainObject>(eval());
}
} // end namespace Eigen
#endif // EIGEN2_QR_H

View File

@ -1,637 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2_SVD_H
#define EIGEN2_SVD_H
namespace Eigen {
/** \ingroup SVD_Module
* \nonstableyet
*
* \class SVD
*
* \brief Standard SVD decomposition of a matrix and associated features
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
*
* This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
* with \c M \>= \c N.
*
*
* \sa MatrixBase::SVD()
*/
template<typename MatrixType> class SVD
{
private:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
enum {
PacketSize = internal::packet_traits<Scalar>::size,
AlignmentMask = int(PacketSize)-1,
MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)
};
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType;
typedef Matrix<Scalar, MinSize, 1> SingularValuesType;
public:
SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7
SVD(const MatrixType& matrix)
: m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())),
m_matV(matrix.cols(),matrix.cols()),
m_sigma((std::min)(matrix.rows(),matrix.cols()))
{
compute(matrix);
}
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
const MatrixUType& matrixU() const { return m_matU; }
const SingularValuesType& singularValues() const { return m_sigma; }
const MatrixVType& matrixV() const { return m_matV; }
void compute(const MatrixType& matrix);
SVD& sort();
template<typename UnitaryType, typename PositiveType>
void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const;
template<typename PositiveType, typename UnitaryType>
void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const;
template<typename RotationType, typename ScalingType>
void computeRotationScaling(RotationType *unitary, ScalingType *positive) const;
template<typename ScalingType, typename RotationType>
void computeScalingRotation(ScalingType *positive, RotationType *unitary) const;
protected:
/** \internal */
MatrixUType m_matU;
/** \internal */
MatrixVType m_matV;
/** \internal */
SingularValuesType m_sigma;
};
/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
*
* \note this code has been adapted from JAMA (public domain)
*/
template<typename MatrixType>
void SVD<MatrixType>::compute(const MatrixType& matrix)
{
const int m = matrix.rows();
const int n = matrix.cols();
const int nu = (std::min)(m,n);
ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!");
ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices");
m_matU.resize(m, nu);
m_matU.setZero();
m_sigma.resize((std::min)(m,n));
m_matV.resize(n,n);
RowVector e(n);
ColVector work(m);
MatrixType matA(matrix);
const bool wantu = true;
const bool wantv = true;
int i=0, j=0, k=0;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
int nct = (std::min)(m-1,n);
int nrt = (std::max)(0,(std::min)(n-2,m));
for (k = 0; k < (std::max)(nct,nrt); ++k)
{
if (k < nct)
{
// Compute the transformation for the k-th column and
// place the k-th diagonal in m_sigma[k].
m_sigma[k] = matA.col(k).end(m-k).norm();
if (m_sigma[k] != 0.0) // FIXME
{
if (matA(k,k) < 0.0)
m_sigma[k] = -m_sigma[k];
matA.col(k).end(m-k) /= m_sigma[k];
matA(k,k) += 1.0;
}
m_sigma[k] = -m_sigma[k];
}
for (j = k+1; j < n; ++j)
{
if ((k < nct) && (m_sigma[k] != 0.0))
{
// Apply the transformation.
Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ??
t = -t/matA(k,k);
matA.col(j).end(m-k) += t * matA.col(k).end(m-k);
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = matA(k,j);
}
// Place the transformation in U for subsequent back multiplication.
if (wantu & (k < nct))
m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
if (k < nrt)
{
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[k].
e[k] = e.end(n-k-1).norm();
if (e[k] != 0.0)
{
if (e[k+1] < 0.0)
e[k] = -e[k];
e.end(n-k-1) /= e[k];
e[k+1] += 1.0;
}
e[k] = -e[k];
if ((k+1 < m) & (e[k] != 0.0))
{
// Apply the transformation.
work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1);
for (j = k+1; j < n; ++j)
matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1);
}
// Place the transformation in V for subsequent back multiplication.
if (wantv)
m_matV.col(k).end(n-k-1) = e.end(n-k-1);
}
}
// Set up the final bidiagonal matrix or order p.
int p = (std::min)(n,m+1);
if (nct < n)
m_sigma[nct] = matA(nct,nct);
if (m < p)
m_sigma[p-1] = 0.0;
if (nrt+1 < p)
e[nrt] = matA(nrt,p-1);
e[p-1] = 0.0;
// If required, generate U.
if (wantu)
{
for (j = nct; j < nu; ++j)
{
m_matU.col(j).setZero();
m_matU(j,j) = 1.0;
}
for (k = nct-1; k >= 0; k--)
{
if (m_sigma[k] != 0.0)
{
for (j = k+1; j < nu; ++j)
{
Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
t = -t/m_matU(k,k);
m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
}
m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
m_matU(k,k) = Scalar(1) + m_matU(k,k);
if (k-1>0)
m_matU.col(k).start(k-1).setZero();
}
else
{
m_matU.col(k).setZero();
m_matU(k,k) = 1.0;
}
}
}
// If required, generate V.
if (wantv)
{
for (k = n-1; k >= 0; k--)
{
if ((k < nrt) & (e[k] != 0.0))
{
for (j = k+1; j < nu; ++j)
{
Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ?
t = -t/m_matV(k+1,k);
m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1);
}
}
m_matV.col(k).setZero();
m_matV(k,k) = 1.0;
}
}
// Main iteration loop for the singular values.
int pp = p-1;
int iter = 0;
Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
while (p > 0)
{
int k=0;
int kase=0;
// Here is where a test for too many iterations would go.
// This section of the program inspects for
// negligible elements in the s and e arrays. On
// completion the variables kase and k are set as follows.
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for (k = p-2; k >= -1; --k)
{
if (k == -1)
break;
if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1])))
{
e[k] = 0.0;
break;
}
}
if (k == p-2)
{
kase = 4;
}
else
{
int ks;
for (ks = p-1; ks >= k; --ks)
{
if (ks == k)
break;
Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0));
if (ei_abs(m_sigma[ks]) <= eps*t)
{
m_sigma[ks] = 0.0;
break;
}
}
if (ks == k)
{
kase = 3;
}
else if (ks == p-1)
{
kase = 1;
}
else
{
kase = 2;
k = ks;
}
}
++k;
// Perform the task indicated by kase.
switch (kase)
{
// Deflate negligible s(p).
case 1:
{
Scalar f(e[p-2]);
e[p-2] = 0.0;
for (j = p-2; j >= k; --j)
{
Scalar t(numext::hypot(m_sigma[j],f));
Scalar cs(m_sigma[j]/t);
Scalar sn(f/t);
m_sigma[j] = t;
if (j != k)
{
f = -sn*e[j-1];
e[j-1] = cs*e[j-1];
}
if (wantv)
{
for (i = 0; i < n; ++i)
{
t = cs*m_matV(i,j) + sn*m_matV(i,p-1);
m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1);
m_matV(i,j) = t;
}
}
}
}
break;
// Split at negligible s(k).
case 2:
{
Scalar f(e[k-1]);
e[k-1] = 0.0;
for (j = k; j < p; ++j)
{
Scalar t(numext::hypot(m_sigma[j],f));
Scalar cs( m_sigma[j]/t);
Scalar sn(f/t);
m_sigma[j] = t;
f = -sn*e[j];
e[j] = cs*e[j];
if (wantu)
{
for (i = 0; i < m; ++i)
{
t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
m_matU(i,j) = t;
}
}
}
}
break;
// Perform one qr step.
case 3:
{
// Calculate the shift.
Scalar scale = (std::max)((std::max)((std::max)((std::max)(
ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])),
ei_abs(m_sigma[k])),ei_abs(e[k]));
Scalar sp = m_sigma[p-1]/scale;
Scalar spm1 = m_sigma[p-2]/scale;
Scalar epm1 = e[p-2]/scale;
Scalar sk = m_sigma[k]/scale;
Scalar ek = e[k]/scale;
Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2);
Scalar c = (sp*epm1)*(sp*epm1);
Scalar shift(0);
if ((b != 0.0) || (c != 0.0))
{
shift = ei_sqrt(b*b + c);
if (b < 0.0)
shift = -shift;
shift = c/(b + shift);
}
Scalar f = (sk + sp)*(sk - sp) + shift;
Scalar g = sk*ek;
// Chase zeros.
for (j = k; j < p-1; ++j)
{
Scalar t = numext::hypot(f,g);
Scalar cs = f/t;
Scalar sn = g/t;
if (j != k)
e[j-1] = t;
f = cs*m_sigma[j] + sn*e[j];
e[j] = cs*e[j] - sn*m_sigma[j];
g = sn*m_sigma[j+1];
m_sigma[j+1] = cs*m_sigma[j+1];
if (wantv)
{
for (i = 0; i < n; ++i)
{
t = cs*m_matV(i,j) + sn*m_matV(i,j+1);
m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1);
m_matV(i,j) = t;
}
}
t = numext::hypot(f,g);
cs = f/t;
sn = g/t;
m_sigma[j] = t;
f = cs*e[j] + sn*m_sigma[j+1];
m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1];
g = sn*e[j+1];
e[j+1] = cs*e[j+1];
if (wantu && (j < m-1))
{
for (i = 0; i < m; ++i)
{
t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
m_matU(i,j) = t;
}
}
}
e[p-2] = f;
iter = iter + 1;
}
break;
// Convergence.
case 4:
{
// Make the singular values positive.
if (m_sigma[k] <= 0.0)
{
m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0);
if (wantv)
m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1);
}
// Order the singular values.
while (k < pp)
{
if (m_sigma[k] >= m_sigma[k+1])
break;
Scalar t = m_sigma[k];
m_sigma[k] = m_sigma[k+1];
m_sigma[k+1] = t;
if (wantv && (k < n-1))
m_matV.col(k).swap(m_matV.col(k+1));
if (wantu && (k < m-1))
m_matU.col(k).swap(m_matU.col(k+1));
++k;
}
iter = 0;
p--;
}
break;
} // end big switch
} // end iterations
}
template<typename MatrixType>
SVD<MatrixType>& SVD<MatrixType>::sort()
{
int mu = m_matU.rows();
int mv = m_matV.rows();
int n = m_matU.cols();
for (int i=0; i<n; ++i)
{
int k = i;
Scalar p = m_sigma.coeff(i);
for (int j=i+1; j<n; ++j)
{
if (m_sigma.coeff(j) > p)
{
k = j;
p = m_sigma.coeff(j);
}
}
if (k != i)
{
m_sigma.coeffRef(k) = m_sigma.coeff(i); // i.e.
m_sigma.coeffRef(i) = p; // swaps the i-th and the k-th elements
int j = mu;
for(int s=0; j!=0; ++s, --j)
std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
j = mv;
for (int s=0; j!=0; ++s, --j)
std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k));
}
}
return *this;
}
/** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A.
* The parts of the solution corresponding to zero singular values are ignored.
*
* \sa MatrixBase::svd(), LU::solve(), LLT::solve()
*/
template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
{
ei_assert(b.rows() == m_matU.rows());
Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
for (int j=0; j<b.cols(); ++j)
{
Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
for (int i = 0; i <m_matU.cols(); ++i)
{
Scalar si = m_sigma.coeff(i);
if (ei_isMuchSmallerThan(ei_abs(si),maxVal))
aux.coeffRef(i) = 0;
else
aux.coeffRef(i) /= si;
}
result->col(j) = m_matV * aux;
}
return true;
}
/** Computes the polar decomposition of the matrix, as a product unitary x positive.
*
* If either pointer is zero, the corresponding computation is skipped.
*
* Only for square matrices.
*
* \sa computePositiveUnitary(), computeRotationScaling()
*/
template<typename MatrixType>
template<typename UnitaryType, typename PositiveType>
void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
PositiveType *positive) const
{
ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
if(unitary) *unitary = m_matU * m_matV.adjoint();
if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
}
/** Computes the polar decomposition of the matrix, as a product positive x unitary.
*
* If either pointer is zero, the corresponding computation is skipped.
*
* Only for square matrices.
*
* \sa computeUnitaryPositive(), computeRotationScaling()
*/
template<typename MatrixType>
template<typename UnitaryType, typename PositiveType>
void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
PositiveType *unitary) const
{
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
if(unitary) *unitary = m_matU * m_matV.adjoint();
if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
}
/** decomposes the matrix as a product rotation x scaling, the scaling being
* not necessarily positive.
*
* If either pointer is zero, the corresponding computation is skipped.
*
* This method requires the Geometry module.
*
* \sa computeScalingRotation(), computeUnitaryPositive()
*/
template<typename MatrixType>
template<typename RotationType, typename ScalingType>
void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
{
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
sv.coeffRef(0) *= x;
if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint());
if(rotation)
{
MatrixType m(m_matU);
m.col(0) /= x;
rotation->lazyAssign(m * m_matV.adjoint());
}
}
/** decomposes the matrix as a product scaling x rotation, the scaling being
* not necessarily positive.
*
* If either pointer is zero, the corresponding computation is skipped.
*
* This method requires the Geometry module.
*
* \sa computeRotationScaling(), computeUnitaryPositive()
*/
template<typename MatrixType>
template<typename ScalingType, typename RotationType>
void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
{
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
sv.coeffRef(0) *= x;
if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
if(rotation)
{
MatrixType m(m_matU);
m.col(0) /= x;
rotation->lazyAssign(m * m_matV.adjoint());
}
}
/** \svd_module
* \returns the SVD decomposition of \c *this
*/
template<typename Derived>
inline SVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::svd() const
{
return SVD<PlainObject>(derived());
}
} // end namespace Eigen
#endif // EIGEN2_SVD_H

View File

@ -1,42 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRIANGULAR_SOLVER2_H
#define EIGEN_TRIANGULAR_SOLVER2_H
namespace Eigen {
const unsigned int UnitDiagBit = UnitDiag;
const unsigned int SelfAdjointBit = SelfAdjoint;
const unsigned int UpperTriangularBit = Upper;
const unsigned int LowerTriangularBit = Lower;
const unsigned int UpperTriangular = Upper;
const unsigned int LowerTriangular = Lower;
const unsigned int UnitUpperTriangular = UnitUpper;
const unsigned int UnitLowerTriangular = UnitLower;
template<typename ExpressionType, unsigned int Added, unsigned int Removed>
template<typename OtherDerived>
typename ExpressionType::PlainObject
Flagged<ExpressionType,Added,Removed>::solveTriangular(const MatrixBase<OtherDerived>& other) const
{
return m_matrix.template triangularView<Added>().solve(other.derived());
}
template<typename ExpressionType, unsigned int Added, unsigned int Removed>
template<typename OtherDerived>
void Flagged<ExpressionType,Added,Removed>::solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const
{
m_matrix.template triangularView<Added>().solveInPlace(other.derived());
}
} // end namespace Eigen
#endif // EIGEN_TRIANGULAR_SOLVER2_H

View File

@ -1,94 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN2_VECTORBLOCK_H
#define EIGEN2_VECTORBLOCK_H
namespace Eigen {
/** \deprecated use DenseMase::head(Index) */
template<typename Derived>
inline VectorBlock<Derived>
MatrixBase<Derived>::start(Index size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return VectorBlock<Derived>(derived(), 0, size);
}
/** \deprecated use DenseMase::head(Index) */
template<typename Derived>
inline const VectorBlock<const Derived>
MatrixBase<Derived>::start(Index size) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return VectorBlock<const Derived>(derived(), 0, size);
}
/** \deprecated use DenseMase::tail(Index) */
template<typename Derived>
inline VectorBlock<Derived>
MatrixBase<Derived>::end(Index size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return VectorBlock<Derived>(derived(), this->size() - size, size);
}
/** \deprecated use DenseMase::tail(Index) */
template<typename Derived>
inline const VectorBlock<const Derived>
MatrixBase<Derived>::end(Index size) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return VectorBlock<const Derived>(derived(), this->size() - size, size);
}
/** \deprecated use DenseMase::head() */
template<typename Derived>
template<int Size>
inline VectorBlock<Derived,Size>
MatrixBase<Derived>::start()
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return VectorBlock<Derived,Size>(derived(), 0);
}
/** \deprecated use DenseMase::head() */
template<typename Derived>
template<int Size>
inline const VectorBlock<const Derived,Size>
MatrixBase<Derived>::start() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return VectorBlock<const Derived,Size>(derived(), 0);
}
/** \deprecated use DenseMase::tail() */
template<typename Derived>
template<int Size>
inline VectorBlock<Derived,Size>
MatrixBase<Derived>::end()
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return VectorBlock<Derived, Size>(derived(), size() - Size);
}
/** \deprecated use DenseMase::tail() */
template<typename Derived>
template<int Size>
inline const VectorBlock<const Derived,Size>
MatrixBase<Derived>::end() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return VectorBlock<const Derived, Size>(derived(), size() - Size);
}
} // end namespace Eigen
#endif // EIGEN2_VECTORBLOCK_H

View File

@ -346,40 +346,6 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
*/
static const int m_maxIterations = 30;
#ifdef EIGEN2_SUPPORT
EIGEN_DEVICE_FUNC
SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors)
: m_eivec(matrix.rows(), matrix.cols()),
m_eivalues(matrix.cols()),
m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
m_isInitialized(false)
{
compute(matrix, computeEigenvectors);
}
EIGEN_DEVICE_FUNC
SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
: m_eivec(matA.cols(), matA.cols()),
m_eivalues(matA.cols()),
m_subdiag(matA.cols() > 1 ? matA.cols() - 1 : 1),
m_isInitialized(false)
{
static_cast<GeneralizedSelfAdjointEigenSolver<MatrixType>*>(this)->compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
}
EIGEN_DEVICE_FUNC
void compute(const MatrixType& matrix, bool computeEigenvectors)
{
compute(matrix, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
}
EIGEN_DEVICE_FUNC
void compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
{
compute(matA, matB, computeEigenvectors ? ComputeEigenvectors : EigenvaluesOnly);
}
#endif // EIGEN2_SUPPORT
protected:
MatrixType m_eivec;
RealVectorType m_eivalues;
@ -389,6 +355,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
bool m_eigenvectorsOk;
};
namespace internal {
/** \internal
*
* \eigenvalues_module \ingroup Eigenvalues_Module
@ -405,7 +372,6 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
* Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
* "implicit symmetric QR step with Wilkinson shift"
*/
namespace internal {
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
EIGEN_DEVICE_FUNC
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);

View File

@ -77,7 +77,9 @@ public:
* represents an invalid rotation. */
template<typename Derived>
inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
/** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
/** Constructs and initialize the angle-axis rotation from a quaternion \a q.
* This function implicitly normalizes the quaternion \a q.
*/
template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
template<typename Derived>
@ -149,29 +151,27 @@ typedef AngleAxis<float> AngleAxisf;
typedef AngleAxis<double> AngleAxisd;
/** Set \c *this from a \b unit quaternion.
* The axis is normalized.
* The resulting axis is normalized.
*
* \warning As any other method dealing with quaternion, if the input quaternion
* is not normalized then the result is undefined.
* This function implicitly normalizes the quaternion \a q.
*/
template<typename Scalar>
template<typename QuatDerived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
{
using std::acos;
EIGEN_USING_STD_MATH(min);
EIGEN_USING_STD_MATH(max);
using std::sqrt;
Scalar n2 = q.vec().squaredNorm();
if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
using std::atan2;
Scalar n = q.vec().norm();
if(n<NumTraits<Scalar>::epsilon())
n = q.vec().stableNorm();
if (n > Scalar(0))
{
m_angle = Scalar(0);
m_axis << Scalar(1), Scalar(0), Scalar(0);
m_angle = Scalar(2)*atan2(n, q.w());
m_axis = q.vec() / n;
}
else
{
m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
m_axis = q.vec() / sqrt(n2);
m_angle = 0;
m_axis << 1, 0, 0;
}
return *this;
}

View File

@ -65,10 +65,10 @@ class DiagonalPreconditioner
{
typename MatType::InnerIterator it(mat,j);
while(it && it.index()!=j) ++it;
if(it && it.index()==j)
if(it && it.index()==j && it.value()!=Scalar(0))
m_invdiag(j) = Scalar(1)/it.value();
else
m_invdiag(j) = 0;
m_invdiag(j) = Scalar(1);
}
m_isInitialized = true;
return *this;

View File

@ -61,6 +61,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
VectorType s(n), t(n);
RealScalar tol2 = tol*tol;
RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
int i = 0;
int restarts = 0;
@ -69,7 +70,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
Scalar rho_old = rho;
rho = r0.dot(r);
if (internal::isMuchSmallerThan(rho,r0_sqnorm))
if (abs(rho) < eps2*r0_sqnorm)
{
// The new residual vector became too orthogonal to the arbitrarily choosen direction r0
// Let's restart with a new r0:

View File

@ -255,13 +255,13 @@ void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar
* Implementation of MatrixBase methods
****************************************************************************************/
namespace internal {
/** \jacobi_module
* Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
* \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right ) = J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
*
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
*/
namespace internal {
template<typename VectorX, typename VectorY, typename OtherScalar>
void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j);
}

View File

@ -371,13 +371,13 @@ struct partial_lu_impl
/** \internal performs the LU decomposition with partial pivoting in-place.
*/
template<typename MatrixType, typename TranspositionType>
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions)
void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndexType& nb_transpositions)
{
eigen_assert(lu.cols() == row_transpositions.size());
eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
partial_lu_impl
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index>
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::StorageIndexType>
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
}
@ -396,7 +396,7 @@ PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& ma
m_rowsTranspositions.resize(size);
typename TranspositionType::Index nb_transpositions;
typename TranspositionType::StorageIndexType nb_transpositions;
internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
m_det_p = (nb_transpositions%2) ? -1 : 1;
@ -481,7 +481,6 @@ MatrixBase<Derived>::partialPivLu() const
}
#endif
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
/** \lu_module
*
* Synonym of partialPivLu().
@ -499,8 +498,6 @@ MatrixBase<Derived>::lu() const
}
#endif
#endif
} // end namespace Eigen
#endif // EIGEN_PARTIALLU_H

View File

@ -109,7 +109,7 @@ class NaturalOrdering
* \class COLAMDOrdering
*
* Functor computing the \em column \em approximate \em minimum \em degree ordering
* The matrix should be in column-major format
* The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
*/
template<typename Index>
class COLAMDOrdering
@ -118,10 +118,14 @@ class COLAMDOrdering
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
typedef Matrix<Index, Dynamic, 1> IndexVector;
/** Compute the permutation vector form a sparse matrix */
/** Compute the permutation vector \a perm form the sparse matrix \a mat
* \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*/
template <typename MatrixType>
void operator() (const MatrixType& mat, PermutationType& perm)
{
eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
Index m = mat.rows();
Index n = mat.cols();
Index nnz = mat.nonZeros();
@ -132,12 +136,12 @@ class COLAMDOrdering
Index stats [COLAMD_STATS];
internal::colamd_set_defaults(knobs);
Index info;
IndexVector p(n+1), A(Alen);
for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
// Call Colamd routine to compute the ordering
info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
EIGEN_UNUSED_VARIABLE(info);
eigen_assert( info && "COLAMD failed " );
perm.resize(n);

View File

@ -375,17 +375,19 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
Scalar z;
JacobiRotation<Scalar> rot;
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
if(n==0)
{
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.row(p) *= z;
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
if(work_matrix.coeff(q,q)!=Scalar(0))
{
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
else
z = Scalar(0);
work_matrix.row(q) *= z;
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
work_matrix.row(q) *= z;
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
}
// otherwise the second row is already zero, so we have nothing to do.
}
else
{
@ -835,7 +837,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
}
// Scaling factor to reducover/under-flows
// Scaling factor to reduce over/under-flows
RealScalar scale = m_workMatrix.cwiseAbs().maxCoeff();
if(scale==RealScalar(0)) scale = RealScalar(1);
m_workMatrix /= scale;

View File

@ -37,6 +37,7 @@ class SimplicialCholeskyBase : internal::noncopyable
{
public:
typedef typename internal::traits<Derived>::MatrixType MatrixType;
typedef typename internal::traits<Derived>::OrderingType OrderingType;
enum { UpLo = internal::traits<Derived>::UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
@ -240,15 +241,16 @@ class SimplicialCholeskyBase : internal::noncopyable
RealScalar m_shiftScale;
};
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLLT;
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLDLT;
template<typename _MatrixType, int _UpLo = Lower> class SimplicialCholesky;
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLLT;
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLDLT;
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialCholesky;
namespace internal {
template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixType,_UpLo> >
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
{
typedef _MatrixType MatrixType;
typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
@ -259,9 +261,10 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixTyp
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixType,_UpLo> >
template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
{
typedef _MatrixType MatrixType;
typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
@ -272,9 +275,10 @@ template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixTyp
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_MatrixType,_UpLo> >
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
{
typedef _MatrixType MatrixType;
typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
};
@ -294,11 +298,12 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_Matr
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
*
* \sa class SimplicialLDLT
* \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
*/
template<typename _MatrixType, int _UpLo>
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo> >
template<typename _MatrixType, int _UpLo, typename _Ordering>
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
{
public:
typedef _MatrixType MatrixType;
@ -382,11 +387,12 @@ public:
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
*
* \sa class SimplicialLLT
* \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
*/
template<typename _MatrixType, int _UpLo>
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo> >
template<typename _MatrixType, int _UpLo, typename _Ordering>
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
{
public:
typedef _MatrixType MatrixType;
@ -467,8 +473,8 @@ public:
*
* \sa class SimplicialLDLT, class SimplicialLLT
*/
template<typename _MatrixType, int _UpLo>
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo> >
template<typename _MatrixType, int _UpLo, typename _Ordering>
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
{
public:
typedef _MatrixType MatrixType;
@ -612,15 +618,13 @@ void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixTy
{
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
// TODO allows to configure the permutation
// Note that amd compute the inverse permutation
{
CholMatrixType C;
C = a.template selfadjointView<UpLo>();
// remove diagonal entries:
// seems not to be needed
// C.prune(keep_diag());
internal::minimum_degree_ordering(C, m_Pinv);
OrderingType ordering;
ordering(C,m_Pinv);
}
if(m_Pinv.size()>0)

View File

@ -83,10 +83,10 @@ class CompressedStorage
reallocate(m_size);
}
void resize(size_t size, float reserveSizeFactor = 0)
void resize(size_t size, double reserveSizeFactor = 0)
{
if (m_allocatedSize<size)
reallocate(size + size_t(reserveSizeFactor*size));
reallocate(size + size_t(reserveSizeFactor*double(size)));
m_size = size;
}

View File

@ -50,11 +50,11 @@ public:
Index m_outer;
};
inline BlockImpl(const XprType& xpr, int i)
inline BlockImpl(const XprType& xpr, Index i)
: m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
{}
inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols)
inline BlockImpl(const XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
{}
@ -65,7 +65,7 @@ public:
{
Index nnz = 0;
Index end = m_outerStart + m_outerSize.value();
for(int j=m_outerStart; j<end; ++j)
for(Index j=m_outerStart; j<end; ++j)
for(typename XprType::InnerIterator it(m_matrix, j); it; ++it)
++nnz;
return nnz;
@ -124,11 +124,11 @@ public:
Index m_outer;
};
inline sparse_matrix_block_impl(const SparseMatrixType& xpr, int i)
inline sparse_matrix_block_impl(const SparseMatrixType& xpr, Index i)
: m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
{}
inline sparse_matrix_block_impl(const SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols)
inline sparse_matrix_block_impl(const SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
{}
@ -228,8 +228,8 @@ public:
Index nonZeros() const
{
if(m_matrix.isCompressed())
return std::size_t(m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()])
- std::size_t(m_matrix.outerIndexPtr()[m_outerStart]);
return Index( std::size_t(m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()])
- std::size_t(m_matrix.outerIndexPtr()[m_outerStart]));
else if(m_outerSize.value()==0)
return 0;
else
@ -264,13 +264,14 @@ class BlockImpl<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true
: public internal::sparse_matrix_block_impl<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols>
{
public:
typedef _Index Index;
typedef SparseMatrix<_Scalar, _Options, _Index> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
inline BlockImpl(SparseMatrixType& xpr, int i)
inline BlockImpl(SparseMatrixType& xpr, Index i)
: Base(xpr, i)
{}
inline BlockImpl(SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols)
inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Base(xpr, startRow, startCol, blockRows, blockCols)
{}
@ -282,13 +283,14 @@ class BlockImpl<const SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCol
: public internal::sparse_matrix_block_impl<const SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols>
{
public:
typedef _Index Index;
typedef const SparseMatrix<_Scalar, _Options, _Index> SparseMatrixType;
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
inline BlockImpl(SparseMatrixType& xpr, int i)
inline BlockImpl(SparseMatrixType& xpr, Index i)
: Base(xpr, i)
{}
inline BlockImpl(SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols)
inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Base(xpr, startRow, startCol, blockRows, blockCols)
{}
@ -362,7 +364,7 @@ public:
/** Column or Row constructor
*/
inline BlockImpl(const XprType& xpr, int i)
inline BlockImpl(const XprType& xpr, Index i)
: m_matrix(xpr),
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
@ -372,32 +374,32 @@ public:
/** Dynamic-size constructor
*/
inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols)
inline BlockImpl(const XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: m_matrix(xpr), m_startRow(startRow), m_startCol(startCol), m_blockRows(blockRows), m_blockCols(blockCols)
{}
inline int rows() const { return m_blockRows.value(); }
inline int cols() const { return m_blockCols.value(); }
inline Index rows() const { return m_blockRows.value(); }
inline Index cols() const { return m_blockCols.value(); }
inline Scalar& coeffRef(int row, int col)
inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.const_cast_derived()
.coeffRef(row + m_startRow.value(), col + m_startCol.value());
}
inline const Scalar coeff(int row, int col) const
inline const Scalar coeff(Index row, Index col) const
{
return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value());
}
inline Scalar& coeffRef(int index)
inline Scalar& coeffRef(Index index)
{
return m_matrix.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const Scalar coeff(int index) const
inline const Scalar coeff(Index index) const
{
return m_matrix
.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
@ -521,6 +523,7 @@ namespace internal {
while(m_outerPos<m_end)
{
m_outerPos++;
if(m_outerPos==m_end) break;
typename XprType::InnerIterator it(m_block.m_matrix, m_outerPos);
// search for the key m_innerIndex in the current outer-vector
while(it && it.index() < m_innerIndex) ++it;

View File

@ -69,7 +69,6 @@ class CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator
: public internal::sparse_cwise_binary_op_inner_iterator_selector<BinaryOp,Lhs,Rhs,typename CwiseBinaryOpImpl<BinaryOp,Lhs,Rhs,Sparse>::InnerIterator>
{
public:
typedef typename Lhs::Index Index;
typedef internal::sparse_cwise_binary_op_inner_iterator_selector<
BinaryOp,Lhs,Rhs, InnerIterator> Base;
@ -95,11 +94,11 @@ class sparse_cwise_binary_op_inner_iterator_selector<BinaryOp, Lhs, Rhs, Derived
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> CwiseBinaryXpr;
typedef typename traits<CwiseBinaryXpr>::Scalar Scalar;
typedef typename traits<CwiseBinaryXpr>::Index Index;
typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
typedef typename _LhsNested::InnerIterator LhsIterator;
typedef typename _RhsNested::InnerIterator RhsIterator;
typedef typename Lhs::Index Index;
public:
@ -161,11 +160,11 @@ class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs,
typedef scalar_product_op<T> BinaryFunc;
typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
typedef typename CwiseBinaryXpr::Scalar Scalar;
typedef typename CwiseBinaryXpr::Index Index;
typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
typedef typename _LhsNested::InnerIterator LhsIterator;
typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
typedef typename _RhsNested::InnerIterator RhsIterator;
typedef typename Lhs::Index Index;
public:
EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
@ -215,15 +214,15 @@ class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs,
typedef scalar_product_op<T> BinaryFunc;
typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
typedef typename CwiseBinaryXpr::Scalar Scalar;
typedef typename CwiseBinaryXpr::Index Index;
typedef typename traits<CwiseBinaryXpr>::_LhsNested _LhsNested;
typedef typename traits<CwiseBinaryXpr>::RhsNested RhsNested;
typedef typename _LhsNested::InnerIterator LhsIterator;
typedef typename Lhs::Index Index;
enum { IsRowMajor = (int(Lhs::Flags)&RowMajorBit)==RowMajorBit };
public:
EIGEN_STRONG_INLINE sparse_cwise_binary_op_inner_iterator_selector(const CwiseBinaryXpr& xpr, Index outer)
: m_rhs(xpr.rhs()), m_lhsIter(xpr.lhs(),outer), m_functor(xpr.functor()), m_outer(outer)
: m_rhs(xpr.rhs()), m_lhsIter(xpr.lhs(),typename _LhsNested::Index(outer)), m_functor(xpr.functor()), m_outer(outer)
{}
EIGEN_STRONG_INLINE Derived& operator++()
@ -256,9 +255,9 @@ class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs,
typedef scalar_product_op<T> BinaryFunc;
typedef CwiseBinaryOp<BinaryFunc, Lhs, Rhs> CwiseBinaryXpr;
typedef typename CwiseBinaryXpr::Scalar Scalar;
typedef typename CwiseBinaryXpr::Index Index;
typedef typename traits<CwiseBinaryXpr>::_RhsNested _RhsNested;
typedef typename _RhsNested::InnerIterator RhsIterator;
typedef typename Lhs::Index Index;
enum { IsRowMajor = (int(Rhs::Flags)&RowMajorBit)==RowMajorBit };
public:

View File

@ -19,7 +19,10 @@ template<typename Lhs, typename Rhs, int InnerSize> struct SparseDenseProductRet
template<typename Lhs, typename Rhs> struct SparseDenseProductReturnType<Lhs,Rhs,1>
{
typedef SparseDenseOuterProduct<Lhs,Rhs,false> Type;
typedef typename internal::conditional<
Lhs::IsRowMajor,
SparseDenseOuterProduct<Rhs,Lhs,true>,
SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
};
template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductReturnType
@ -29,7 +32,10 @@ template<typename Lhs, typename Rhs, int InnerSize> struct DenseSparseProductRet
template<typename Lhs, typename Rhs> struct DenseSparseProductReturnType<Lhs,Rhs,1>
{
typedef SparseDenseOuterProduct<Rhs,Lhs,true> Type;
typedef typename internal::conditional<
Rhs::IsRowMajor,
SparseDenseOuterProduct<Rhs,Lhs,true>,
SparseDenseOuterProduct<Lhs,Rhs,false> >::type Type;
};
namespace internal {
@ -96,8 +102,8 @@ class SparseDenseOuterProduct
EIGEN_STATIC_ASSERT(Tr,YOU_MADE_A_PROGRAMMING_MISTAKE);
}
EIGEN_STRONG_INLINE Index rows() const { return Tr ? m_rhs.rows() : m_lhs.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return Tr ? m_lhs.cols() : m_rhs.cols(); }
EIGEN_STRONG_INLINE Index rows() const { return Tr ? Index(m_rhs.rows()) : m_lhs.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return Tr ? m_lhs.cols() : Index(m_rhs.cols()); }
EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
@ -114,18 +120,33 @@ class SparseDenseOuterProduct<Lhs,Rhs,Transpose>::InnerIterator : public _LhsNes
typedef typename SparseDenseOuterProduct::Index Index;
public:
EIGEN_STRONG_INLINE InnerIterator(const SparseDenseOuterProduct& prod, Index outer)
: Base(prod.lhs(), 0), m_outer(outer), m_factor(prod.rhs().coeff(outer))
{
}
: Base(prod.lhs(), 0), m_outer(outer), m_empty(false), m_factor(get(prod.rhs(), outer, typename internal::traits<Rhs>::StorageKind() ))
{}
inline Index outer() const { return m_outer; }
inline Index row() const { return Transpose ? Base::row() : m_outer; }
inline Index col() const { return Transpose ? m_outer : Base::row(); }
inline Index row() const { return Transpose ? m_outer : Base::index(); }
inline Index col() const { return Transpose ? Base::index() : m_outer; }
inline Scalar value() const { return Base::value() * m_factor; }
inline operator bool() const { return Base::operator bool() && !m_empty; }
protected:
Scalar get(const _RhsNested &rhs, Index outer, Dense = Dense()) const
{
return rhs.coeff(outer);
}
Scalar get(const _RhsNested &rhs, Index outer, Sparse = Sparse())
{
typename Traits::_RhsNested::InnerIterator it(rhs, outer);
if (it && it.index()==0 && it.value()!=Scalar(0))
return it.value();
m_empty = true;
return Scalar(0);
}
Index m_outer;
bool m_empty;
Scalar m_factor;
};

View File

@ -32,8 +32,10 @@ struct traits<SparseDiagonalProduct<Lhs, Rhs> >
typedef typename remove_all<Lhs>::type _Lhs;
typedef typename remove_all<Rhs>::type _Rhs;
typedef typename _Lhs::Scalar Scalar;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
// propagate the index type of the sparse matrix
typedef typename conditional< is_diagonal<_Lhs>::ret,
typename traits<Rhs>::Index,
typename traits<Lhs>::Index>::type Index;
typedef Sparse StorageKind;
typedef MatrixXpr XprKind;
enum {
@ -90,8 +92,8 @@ class SparseDiagonalProduct
eigen_assert(lhs.cols() == rhs.rows() && "invalid sparse matrix * diagonal matrix product");
}
EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
EIGEN_STRONG_INLINE Index rows() const { return Index(m_lhs.rows()); }
EIGEN_STRONG_INLINE Index cols() const { return Index(m_rhs.cols()); }
EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
@ -109,7 +111,7 @@ class sparse_diagonal_product_inner_iterator_selector
: public CwiseUnaryOp<scalar_multiple_op<typename Lhs::Scalar>,const Rhs>::InnerIterator
{
typedef typename CwiseUnaryOp<scalar_multiple_op<typename Lhs::Scalar>,const Rhs>::InnerIterator Base;
typedef typename Lhs::Index Index;
typedef typename Rhs::Index Index;
public:
inline sparse_diagonal_product_inner_iterator_selector(
const SparseDiagonalProductType& expr, Index outer)
@ -129,7 +131,7 @@ class sparse_diagonal_product_inner_iterator_selector
scalar_product_op<typename Lhs::Scalar>,
const typename Rhs::ConstInnerVectorReturnType,
const typename Lhs::DiagonalVectorType>::InnerIterator Base;
typedef typename Lhs::Index Index;
typedef typename Rhs::Index Index;
Index m_outer;
public:
inline sparse_diagonal_product_inner_iterator_selector(

View File

@ -800,7 +800,9 @@ protected:
template<typename Other>
void initAssignment(const Other& other)
{
resize(other.rows(), other.cols());
eigen_assert( other.rows() == typename Other::Index(Index(other.rows()))
&& other.cols() == typename Other::Index(Index(other.cols())) );
resize(Index(other.rows()), Index(other.cols()));
if(m_innerNonZeros)
{
std::free(m_innerNonZeros);
@ -940,7 +942,7 @@ void set_from_triplets(const InputIterator& begin, const InputIterator& end, Spa
enum { IsRowMajor = SparseMatrixType::IsRowMajor };
typedef typename SparseMatrixType::Scalar Scalar;
typedef typename SparseMatrixType::Index Index;
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor> trMat(mat.rows(),mat.cols());
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols());
if(begin!=end)
{
@ -1178,7 +1180,7 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
size_t p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
float reallocRatio = 1;
double reallocRatio = 1;
if (m_data.allocatedSize()<=m_data.size())
{
// if there is no preallocated memory, let's reserve a minimum of 32 elements
@ -1190,13 +1192,13 @@ EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& Sparse
{
// we need to reallocate the data, to reduce multiple reallocations
// we use a smart resize algorithm based on the current filling ratio
// in addition, we use float to avoid integers overflows
float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
// in addition, we use double to avoid integers overflows
double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
// furthermore we bound the realloc ratio to:
// 1) reduce multiple minor realloc when the matrix is almost filled
// 2) avoid to allocate too much memory when the matrix is almost empty
reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
}
}
m_data.resize(m_data.size()+1,reallocRatio);

View File

@ -202,20 +202,20 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
inline Derived& assign(const OtherDerived& other)
{
const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols();
const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? Index(other.rows()) : Index(other.cols());
if ((!transpose) && other.isRValue())
{
// eval without temporary
derived().resize(other.rows(), other.cols());
derived().resize(Index(other.rows()), Index(other.cols()));
derived().setZero();
derived().reserve((std::max)(this->rows(),this->cols())*2);
for (Index j=0; j<outerSize; ++j)
{
derived().startVec(j);
for (typename OtherDerived::InnerIterator it(other, j); it; ++it)
for (typename OtherDerived::InnerIterator it(other, typename OtherDerived::Index(j)); it; ++it)
{
Scalar v = it.value();
derived().insertBackByOuterInner(j,it.index()) = v;
derived().insertBackByOuterInner(j,Index(it.index())) = v;
}
}
derived().finalize();
@ -237,19 +237,19 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
enum { Flip = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit) };
const Index outerSize = other.outerSize();
const Index outerSize = Index(other.outerSize());
//typedef typename internal::conditional<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::type TempType;
// thanks to shallow copies, we always eval to a tempary
Derived temp(other.rows(), other.cols());
Derived temp(Index(other.rows()), Index(other.cols()));
temp.reserve((std::max)(this->rows(),this->cols())*2);
for (Index j=0; j<outerSize; ++j)
{
temp.startVec(j);
for (typename OtherDerived::InnerIterator it(other.derived(), j); it; ++it)
for (typename OtherDerived::InnerIterator it(other.derived(), typename OtherDerived::Index(j)); it; ++it)
{
Scalar v = it.value();
temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
temp.insertBackByOuterInner(Flip?Index(it.index()):j,Flip?j:Index(it.index())) = v;
}
}
temp.finalize();
@ -369,17 +369,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
template<typename OtherDerived>
Derived& operator*=(const SparseMatrixBase<OtherDerived>& other);
#ifdef EIGEN2_SUPPORT
// deprecated
template<typename OtherDerived>
typename internal::plain_matrix_type_column_major<OtherDerived>::type
solveTriangular(const MatrixBase<OtherDerived>& other) const;
// deprecated
template<typename OtherDerived>
void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
#endif // EIGEN2_SUPPORT
template<int Mode>
inline const SparseTriangularView<Derived, Mode> triangularView() const;
@ -412,7 +401,7 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
{
dst.setZero();
for (Index j=0; j<outerSize(); ++j)
for (typename Derived::InnerIterator i(derived(),j); i; ++i)
for (typename Derived::InnerIterator i(derived(),typename Derived::Index(j)); i; ++i)
dst.coeffRef(i.row(),i.col()) = i.value();
}

View File

@ -246,7 +246,7 @@ class SparseSelfAdjointTimeDenseProduct
|| ( (UpLo&Lower) && LhsIsRowMajor),
ProcessSecondHalf = !ProcessFirstHalf
};
for (Index j=0; j<m_lhs.outerSize(); ++j)
for (typename _Lhs::Index j=0; j<m_lhs.outerSize(); ++j)
{
LhsInnerIterator i(m_lhs,j);
if (ProcessSecondHalf)

View File

@ -84,8 +84,11 @@ template<typename Lhs, typename Rhs> class DenseTimeSparseProduct;
template<typename Lhs, typename Rhs, bool Transpose> class SparseDenseOuterProduct;
template<typename Lhs, typename Rhs> struct SparseSparseProductReturnType;
template<typename Lhs, typename Rhs, int InnerSize = internal::traits<Lhs>::ColsAtCompileTime> struct DenseSparseProductReturnType;
template<typename Lhs, typename Rhs, int InnerSize = internal::traits<Lhs>::ColsAtCompileTime> struct SparseDenseProductReturnType;
template<typename Lhs, typename Rhs,
int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct DenseSparseProductReturnType;
template<typename Lhs, typename Rhs,
int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct SparseDenseProductReturnType;
template<typename MatrixType,int UpLo> class SparseSymmetricPermutationProduct;
namespace internal {

View File

@ -28,15 +28,16 @@ template<typename Lhs, typename Rhs, int Mode>
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename Lhs::Index Index;
static void run(const Lhs& lhs, Rhs& other)
{
for(int col=0 ; col<other.cols() ; ++col)
for(Index col=0 ; col<other.cols() ; ++col)
{
for(int i=0; i<lhs.rows(); ++i)
for(Index i=0; i<lhs.rows(); ++i)
{
Scalar tmp = other.coeff(i,col);
Scalar lastVal(0);
int lastIndex = 0;
Index lastIndex = 0;
for(typename Lhs::InnerIterator it(lhs, i); it; ++it)
{
lastVal = it.value();
@ -62,11 +63,12 @@ template<typename Lhs, typename Rhs, int Mode>
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,RowMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename Lhs::Index Index;
static void run(const Lhs& lhs, Rhs& other)
{
for(int col=0 ; col<other.cols() ; ++col)
for(Index col=0 ; col<other.cols() ; ++col)
{
for(int i=lhs.rows()-1 ; i>=0 ; --i)
for(Index i=lhs.rows()-1 ; i>=0 ; --i)
{
Scalar tmp = other.coeff(i,col);
Scalar l_ii = 0;
@ -100,11 +102,12 @@ template<typename Lhs, typename Rhs, int Mode>
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename Lhs::Index Index;
static void run(const Lhs& lhs, Rhs& other)
{
for(int col=0 ; col<other.cols() ; ++col)
for(Index col=0 ; col<other.cols() ; ++col)
{
for(int i=0; i<lhs.cols(); ++i)
for(Index i=0; i<lhs.cols(); ++i)
{
Scalar& tmp = other.coeffRef(i,col);
if (tmp!=Scalar(0)) // optimization when other is actually sparse
@ -132,11 +135,12 @@ template<typename Lhs, typename Rhs, int Mode>
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename Lhs::Index Index;
static void run(const Lhs& lhs, Rhs& other)
{
for(int col=0 ; col<other.cols() ; ++col)
for(Index col=0 ; col<other.cols() ; ++col)
{
for(int i=lhs.cols()-1; i>=0; --i)
for(Index i=lhs.cols()-1; i>=0; --i)
{
Scalar& tmp = other.coeffRef(i,col);
if (tmp!=Scalar(0)) // optimization when other is actually sparse
@ -209,7 +213,7 @@ struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
{
typedef typename Rhs::Scalar Scalar;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
typename traits<Rhs>::Index>::type Index;
static void run(const Lhs& lhs, Rhs& other)
{
const bool IsLower = (UpLo==Lower);
@ -219,7 +223,7 @@ struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
Rhs res(other.rows(), other.cols());
res.reserve(other.nonZeros());
for(int col=0 ; col<other.cols() ; ++col)
for(Index col=0 ; col<other.cols() ; ++col)
{
// FIXME estimate number of non zeros
tempVector.init(.99/*float(other.col(col).nonZeros())/float(other.rows())*/);
@ -230,7 +234,7 @@ struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
tempVector.coeffRef(rhsIt.index()) = rhsIt.value();
}
for(int i=IsLower?0:lhs.cols()-1;
for(Index i=IsLower?0:lhs.cols()-1;
IsLower?i<lhs.cols():i>=0;
i+=IsLower?1:-1)
{
@ -267,7 +271,7 @@ struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
}
int count = 0;
Index count = 0;
// FIXME compute a reference value to filter zeros
for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector/*,1e-12*/); it; ++it)
{
@ -305,30 +309,6 @@ void SparseTriangularView<ExpressionType,Mode>::solveInPlace(SparseMatrixBase<Ot
// other = otherCopy;
}
#ifdef EIGEN2_SUPPORT
// deprecated stuff:
/** \deprecated */
template<typename Derived>
template<typename OtherDerived>
void SparseMatrixBase<Derived>::solveTriangularInPlace(MatrixBase<OtherDerived>& other) const
{
this->template triangular<Flags&(Upper|Lower)>().solveInPlace(other);
}
/** \deprecated */
template<typename Derived>
template<typename OtherDerived>
typename internal::plain_matrix_type_column_major<OtherDerived>::type
SparseMatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
{
typename internal::plain_matrix_type_column_major<OtherDerived>::type res(other);
derived().solveTriangularInPlace(res);
return res;
}
#endif // EIGEN2_SUPPORT
} // end namespace Eigen
#endif // EIGEN_SPARSETRIANGULARSOLVER_H

View File

@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -58,6 +58,7 @@ namespace internal {
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
*
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
*
*/
template<typename _MatrixType, typename _OrderingType>
@ -77,10 +78,23 @@ class SparseQR
SparseQR () : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
{ }
/** Construct a QR factorization of the matrix \a mat.
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* \sa compute()
*/
SparseQR(const MatrixType& mat) : m_isInitialized(false), m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false)
{
compute(mat);
}
/** Computes the QR factorization of the sparse matrix \a mat.
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* \sa analyzePattern(), factorize()
*/
void compute(const MatrixType& mat)
{
analyzePattern(mat);
@ -166,7 +180,7 @@ class SparseQR
y.bottomRows(y.rows()-rank).setZero();
// Apply the column permutation
if (m_perm_c.size()) dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
else dest = y.topRows(cols());
m_info = Success;
@ -255,6 +269,8 @@ class SparseQR
};
/** \brief Preprocessing step of a QR factorization
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* In this step, the fill-reducing permutation is computed and applied to the columns of A
* and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
@ -264,11 +280,13 @@ class SparseQR
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
{
eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
// Compute the column fill reducing ordering
OrderingType ord;
ord(mat, m_perm_c);
Index n = mat.cols();
Index m = mat.rows();
Index diagSize = (std::min)(m,n);
if (!m_perm_c.size())
{
@ -280,13 +298,13 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
m_outputPerm_c = m_perm_c.inverse();
internal::coletree(mat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
m_R.resize(n, n);
m_Q.resize(m, n);
m_R.resize(m, n);
m_Q.resize(m, diagSize);
// Allocate space for nonzero elements : rough estimation
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
m_Q.reserve(2*mat.nonZeros());
m_hcoeffs.resize(n);
m_hcoeffs.resize(diagSize);
m_analysisIsok = true;
}
@ -306,11 +324,12 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
Index m = mat.rows();
Index n = mat.cols();
IndexVector mark(m); mark.setConstant(-1); // Record the visited nodes
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
ScalarVector tval(m); // The dense vector used to compute the current column
bool found_diag;
Index diagSize = (std::min)(m,n);
IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
ScalarVector tval(m); // The dense vector used to compute the current column
RealScalar pivotThreshold = m_threshold;
m_pmat = mat;
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
@ -322,7 +341,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
m_pmat.innerNonZeroPtr()[p] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
}
/* Compute the default threshold, see :
/* Compute the default threshold as in MatLab, see:
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
*/
@ -330,24 +349,24 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
{
RealScalar max2Norm = 0.0;
for (int j = 0; j < n; j++) max2Norm = (max)(max2Norm, m_pmat.col(j).norm());
m_threshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
}
// Initialize the numerical permutation
m_pivotperm.setIdentity(n);
Index nonzeroCol = 0; // Record the number of valid pivots
m_Q.startVec(0);
// Left looking rank-revealing QR factorization: compute a column of R and Q at a time
for (Index col = 0; col < (std::min)(n,m); ++col)
for (Index col = 0; col < n; ++col)
{
mark.setConstant(-1);
m_R.startVec(col);
m_Q.startVec(col);
mark(nonzeroCol) = col;
Qidx(0) = nonzeroCol;
nzcolR = 0; nzcolQ = 1;
found_diag = col>=m;
bool found_diag = nonzeroCol>=m;
tval.setZero();
// Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
@ -356,7 +375,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
for (typename MatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
{
Index curIdx = nonzeroCol ;
Index curIdx = nonzeroCol;
if(itp) curIdx = itp.row();
if(curIdx == nonzeroCol) found_diag = true;
@ -398,7 +417,7 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
// Browse all the indexes of R(:,col) in reverse order
for (Index i = nzcolR-1; i >= 0; i--)
{
Index curIdx = m_pivotperm.indices()(Ridx(i));
Index curIdx = Ridx(i);
// Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
Scalar tdot(0);
@ -428,33 +447,36 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
}
} // End update current column
// Compute the Householder reflection that eliminate the current column
// FIXME this step should call the Householder module.
Scalar tau;
RealScalar beta;
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
RealScalar beta = 0;
// First, the squared norm of Q((col+1):m, col)
RealScalar sqrNorm = 0.;
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
if(nonzeroCol < diagSize)
{
tau = RealScalar(0);
beta = numext::real(c0);
tval(Qidx(0)) = 1;
}
else
{
using std::sqrt;
beta = sqrt(numext::abs2(c0) + sqrNorm);
if(numext::real(c0) >= RealScalar(0))
beta = -beta;
tval(Qidx(0)) = 1;
for (Index itq = 1; itq < nzcolQ; ++itq)
tval(Qidx(itq)) /= (c0 - beta);
tau = numext::conj((beta-c0) / beta);
// Compute the Householder reflection that eliminate the current column
// FIXME this step should call the Householder module.
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
// First, the squared norm of Q((col+1):m, col)
RealScalar sqrNorm = 0.;
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
{
tau = RealScalar(0);
beta = numext::real(c0);
tval(Qidx(0)) = 1;
}
else
{
using std::sqrt;
beta = sqrt(numext::abs2(c0) + sqrNorm);
if(numext::real(c0) >= RealScalar(0))
beta = -beta;
tval(Qidx(0)) = 1;
for (Index itq = 1; itq < nzcolQ; ++itq)
tval(Qidx(itq)) /= (c0 - beta);
tau = numext::conj((beta-c0) / beta);
}
}
// Insert values in R
@ -468,24 +490,25 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
}
}
if(abs(beta) >= m_threshold)
if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
{
m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
nonzeroCol++;
// The householder coefficient
m_hcoeffs(col) = tau;
m_hcoeffs(nonzeroCol) = tau;
// Record the householder reflections
for (Index itq = 0; itq < nzcolQ; ++itq)
{
Index iQ = Qidx(itq);
m_Q.insertBackByOuterInnerUnordered(col,iQ) = tval(iQ);
m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
tval(iQ) = Scalar(0.);
}
nonzeroCol++;
if(nonzeroCol<diagSize)
m_Q.startVec(nonzeroCol);
}
else
{
// Zero pivot found: move implicitly this column to the end
m_hcoeffs(col) = Scalar(0);
for (Index j = nonzeroCol; j < n-1; j++)
std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
@ -494,6 +517,8 @@ void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
}
}
m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
// Finalize the column pointers of the sparse matrices R and Q
m_Q.finalize();
m_Q.makeCompressed();
@ -562,14 +587,16 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
template<typename DesType>
void evalTo(DesType& res) const
{
Index m = m_qr.rows();
Index n = m_qr.cols();
Index diagSize = (std::min)(m,n);
res = m_other;
if (m_transpose)
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
//Compute res = Q' * other column by column
for(Index j = 0; j < res.cols(); j++){
for (Index k = 0; k < n; k++)
for (Index k = 0; k < diagSize; k++)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
@ -582,10 +609,10 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
else
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
// Compute res = Q' * other column by column
// Compute res = Q * other column by column
for(Index j = 0; j < res.cols(); j++)
{
for (Index k = n-1; k >=0; k--)
for (Index k = diagSize-1; k >=0; k--)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
@ -619,7 +646,7 @@ struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<Sp
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
inline Index rows() const { return m_qr.rows(); }
inline Index cols() const { return m_qr.cols(); }
inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
// To use for operations with the transpose of Q
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
{

View File

@ -141,6 +141,18 @@ tan() const
return derived();
}
/** \returns an expression of the coefficient-wise arc tan of *this.
*
* Example: \include Cwise_atan.cpp
* Output: \verbinclude Cwise_atan.out
*
* \sa cos(), sin(), tan()
*/
inline const CwiseUnaryOp<internal::scalar_atan_op<Scalar>, Derived>
atan() const
{
return derived();
}
/** \returns an expression of the coefficient-wise power of *this to the given exponent.
*

Some files were not shown because too many files have changed in this diff Show More