Comment FIXMEs on Rank2Update.h and remove unused files.

This commit is contained in:
Chen-Pang He 2012-09-08 21:25:09 +08:00
parent e4e7585a24
commit 17c746523e
5 changed files with 19 additions and 997 deletions

View File

@ -23,13 +23,12 @@ struct rank2_update_selector<Scalar,Index,Upper>
{
static void run(Index size, Scalar* mat, Index stride, const Scalar* _u, const Scalar* _v, Scalar alpha)
{
typedef Matrix<Scalar,Dynamic,1> PlainVector;
Map<const PlainVector> u(_u, size), v(_v, size);
Map<const Matrix<Scalar,Dynamic,1> > u(_u, size), v(_v, size);
for (Index i=0; i<size; ++i)
{
Map<PlainVector>(mat+stride*i, i+1) += conj(alpha) * conj(_u[i]) * v.head(i+1)
+ alpha * conj(_v[i]) * u.head(i+1);
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i, i+1) +=
conj(alpha) * conj(_u[i]) * v.head(i+1)
+ alpha * conj(_v[i]) * u.head(i+1);
}
}
};
@ -39,13 +38,12 @@ struct rank2_update_selector<Scalar,Index,Lower>
{
static void run(Index size, Scalar* mat, Index stride, const Scalar* _u, const Scalar* _v, Scalar alpha)
{
typedef Matrix<Scalar,Dynamic,1> PlainVector;
Map<const PlainVector> u(_u, size), v(_v, size);
Map<const Matrix<Scalar,Dynamic,1> > u(_u, size), v(_v, size);
for (Index i=0; i<size; ++i)
{
Map<PlainVector>(mat+(stride+1)*i, size-i) += conj(alpha) * conj(_u[i]) * v.tail(size-i)
+ alpha * conj(_v[i]) * u.tail(size-i);
Map<Matrix<Scalar,Dynamic,1> >(mat+(stride+1)*i, size-i) +=
conj(alpha) * conj(_u[i]) * v.tail(size-i)
+ alpha * conj(_v[i]) * u.tail(size-i);
}
}
};
@ -61,16 +59,16 @@ struct packed_rank2_update_selector<Scalar,Index,Upper>
{
static void run(Index size, Scalar* mat, const Scalar* _u, const Scalar* _v, Scalar alpha)
{
typedef Matrix<Scalar,Dynamic,1> PlainVector;
Map<const PlainVector> u(_u, size), v(_v, size);
Map<const Matrix<Scalar,Dynamic,1> > u(_u, size), v(_v, size);
Index offset = 0;
for (Index i=0; i<size; ++i)
{
offset += i;
Map<PlainVector>(mat+offset, i+1) += conj(alpha) * conj(_u[i]) * v.head(i+1)
+ alpha * conj(_v[i]) * u.head(i+1);
Map<Matrix<Scalar,Dynamic,1> >(mat+offset, i+1) +=
conj(alpha) * conj(_u[i]) * v.head(i+1)
+ alpha * conj(_v[i]) * u.head(i+1);
//FIXME This should be handled outside.
mat[offset+i] = real(mat[offset+i]);
offset += i+1;
}
}
};
@ -80,14 +78,14 @@ struct packed_rank2_update_selector<Scalar,Index,Lower>
{
static void run(Index size, Scalar* mat, const Scalar* _u, const Scalar* _v, Scalar alpha)
{
typedef Matrix<Scalar,Dynamic,1> PlainVector;
Map<const PlainVector> u(_u, size), v(_v, size);
Map<const Matrix<Scalar,Dynamic,1> > u(_u, size), v(_v, size);
Index offset = 0;
for (Index i=0; i<size; ++i)
{
Map<PlainVector>(mat+offset, size-i) += conj(alpha) * conj(_u[i]) * v.tail(size-i)
+ alpha * conj(_v[i]) * u.tail(size-i);
Map<Matrix<Scalar,Dynamic,1> >(mat+offset, size-i) +=
conj(alpha) * conj(_u[i]) * v.tail(size-i)
+ alpha * conj(_v[i]) * u.tail(size-i);
//FIXME This should be handled outside.
mat[offset] = real(mat[offset]);
offset += size-i;
}

View File

@ -1,255 +0,0 @@
SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
* .. Scalar Arguments ..
COMPLEX ALPHA
INTEGER INCX,INCY,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX AP(*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* CHPR2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n hermitian matrix, supplied in packed form.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the matrix A is supplied in the packed
* array AP as follows:
*
* UPLO = 'U' or 'u' The upper triangular part of A is
* supplied in AP.
*
* UPLO = 'L' or 'l' The lower triangular part of A is
* supplied in AP.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - COMPLEX .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - COMPLEX array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Y - COMPLEX array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the n
* element vector y.
* Unchanged on exit.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* AP - COMPLEX array of DIMENSION at least
* ( ( n*( n + 1 ) )/2 ).
* Before entry with UPLO = 'U' or 'u', the array AP must
* contain the upper triangular part of the hermitian matrix
* packed sequentially, column by column, so that AP( 1 )
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
* and a( 2, 2 ) respectively, and so on. On exit, the array
* AP is overwritten by the upper triangular part of the
* updated matrix.
* Before entry with UPLO = 'L' or 'l', the array AP must
* contain the lower triangular part of the hermitian matrix
* packed sequentially, column by column, so that AP( 1 )
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
* and a( 3, 1 ) respectively, and so on. On exit, the array
* AP is overwritten by the lower triangular part of the
* updated matrix.
* Note that the imaginary parts of the diagonal elements need
* not be set, they are assumed to be zero, and on exit they
* are set to zero.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHPR2 ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Set up the start points in X and Y if the increments are not both
* unity.
*
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
JX = KX
JY = KY
END IF
*
* Start the operations. In this version the elements of the array AP
* are accessed sequentially with one pass through AP.
*
KK = 1
IF (LSAME(UPLO,'U')) THEN
*
* Form A when upper triangle is stored in AP.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 20 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(J))
TEMP2 = CONJG(ALPHA*X(J))
K = KK
DO 10 I = 1,J - 1
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
K = K + 1
10 CONTINUE
AP(KK+J-1) = REAL(AP(KK+J-1)) +
+ REAL(X(J)*TEMP1+Y(J)*TEMP2)
ELSE
AP(KK+J-1) = REAL(AP(KK+J-1))
END IF
KK = KK + J
20 CONTINUE
ELSE
DO 40 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(JY))
TEMP2 = CONJG(ALPHA*X(JX))
IX = KX
IY = KY
DO 30 K = KK,KK + J - 2
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
30 CONTINUE
AP(KK+J-1) = REAL(AP(KK+J-1)) +
+ REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
ELSE
AP(KK+J-1) = REAL(AP(KK+J-1))
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + J
40 CONTINUE
END IF
ELSE
*
* Form A when lower triangle is stored in AP.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(J))
TEMP2 = CONJG(ALPHA*X(J))
AP(KK) = REAL(AP(KK)) +
+ REAL(X(J)*TEMP1+Y(J)*TEMP2)
K = KK + 1
DO 50 I = J + 1,N
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
K = K + 1
50 CONTINUE
ELSE
AP(KK) = REAL(AP(KK))
END IF
KK = KK + N - J + 1
60 CONTINUE
ELSE
DO 80 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(JY))
TEMP2 = CONJG(ALPHA*X(JX))
AP(KK) = REAL(AP(KK)) +
+ REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
IX = JX
IY = JY
DO 70 K = KK + 1,KK + N - J
IX = IX + INCX
IY = IY + INCY
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
70 CONTINUE
ELSE
AP(KK) = REAL(AP(KK))
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + N - J + 1
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHPR2 .
*
END

View File

@ -1,233 +0,0 @@
SUBROUTINE DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
* .. Scalar Arguments ..
DOUBLE PRECISION ALPHA
INTEGER INCX,INCY,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP(*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* DSPR2 performs the symmetric rank 2 operation
*
* A := alpha*x*y' + alpha*y*x' + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n symmetric matrix, supplied in packed form.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the matrix A is supplied in the packed
* array AP as follows:
*
* UPLO = 'U' or 'u' The upper triangular part of A is
* supplied in AP.
*
* UPLO = 'L' or 'l' The lower triangular part of A is
* supplied in AP.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - DOUBLE PRECISION.
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - DOUBLE PRECISION array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Y - DOUBLE PRECISION array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the n
* element vector y.
* Unchanged on exit.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* AP - DOUBLE PRECISION array of DIMENSION at least
* ( ( n*( n + 1 ) )/2 ).
* Before entry with UPLO = 'U' or 'u', the array AP must
* contain the upper triangular part of the symmetric matrix
* packed sequentially, column by column, so that AP( 1 )
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
* and a( 2, 2 ) respectively, and so on. On exit, the array
* AP is overwritten by the upper triangular part of the
* updated matrix.
* Before entry with UPLO = 'L' or 'l', the array AP must
* contain the lower triangular part of the symmetric matrix
* packed sequentially, column by column, so that AP( 1 )
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
* and a( 3, 1 ) respectively, and so on. On exit, the array
* AP is overwritten by the lower triangular part of the
* updated matrix.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER (ZERO=0.0D+0)
* ..
* .. Local Scalars ..
DOUBLE PRECISION TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DSPR2 ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Set up the start points in X and Y if the increments are not both
* unity.
*
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
JX = KX
JY = KY
END IF
*
* Start the operations. In this version the elements of the array AP
* are accessed sequentially with one pass through AP.
*
KK = 1
IF (LSAME(UPLO,'U')) THEN
*
* Form A when upper triangle is stored in AP.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 20 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(J)
TEMP2 = ALPHA*X(J)
K = KK
DO 10 I = 1,J
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
K = K + 1
10 CONTINUE
END IF
KK = KK + J
20 CONTINUE
ELSE
DO 40 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(JY)
TEMP2 = ALPHA*X(JX)
IX = KX
IY = KY
DO 30 K = KK,KK + J - 1
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
30 CONTINUE
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + J
40 CONTINUE
END IF
ELSE
*
* Form A when lower triangle is stored in AP.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(J)
TEMP2 = ALPHA*X(J)
K = KK
DO 50 I = J,N
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
K = K + 1
50 CONTINUE
END IF
KK = KK + N - J + 1
60 CONTINUE
ELSE
DO 80 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(JY)
TEMP2 = ALPHA*X(JX)
IX = JX
IY = JY
DO 70 K = KK,KK + N - J
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + N - J + 1
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of DSPR2 .
*
END

View File

@ -1,233 +0,0 @@
SUBROUTINE SSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
* .. Scalar Arguments ..
REAL ALPHA
INTEGER INCX,INCY,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
REAL AP(*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* SSPR2 performs the symmetric rank 2 operation
*
* A := alpha*x*y' + alpha*y*x' + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n symmetric matrix, supplied in packed form.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the matrix A is supplied in the packed
* array AP as follows:
*
* UPLO = 'U' or 'u' The upper triangular part of A is
* supplied in AP.
*
* UPLO = 'L' or 'l' The lower triangular part of A is
* supplied in AP.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - REAL .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - REAL array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Y - REAL array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the n
* element vector y.
* Unchanged on exit.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* AP - REAL array of DIMENSION at least
* ( ( n*( n + 1 ) )/2 ).
* Before entry with UPLO = 'U' or 'u', the array AP must
* contain the upper triangular part of the symmetric matrix
* packed sequentially, column by column, so that AP( 1 )
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
* and a( 2, 2 ) respectively, and so on. On exit, the array
* AP is overwritten by the upper triangular part of the
* updated matrix.
* Before entry with UPLO = 'L' or 'l', the array AP must
* contain the lower triangular part of the symmetric matrix
* packed sequentially, column by column, so that AP( 1 )
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
* and a( 3, 1 ) respectively, and so on. On exit, the array
* AP is overwritten by the lower triangular part of the
* updated matrix.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER (ZERO=0.0E+0)
* ..
* .. Local Scalars ..
REAL TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('SSPR2 ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Set up the start points in X and Y if the increments are not both
* unity.
*
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
JX = KX
JY = KY
END IF
*
* Start the operations. In this version the elements of the array AP
* are accessed sequentially with one pass through AP.
*
KK = 1
IF (LSAME(UPLO,'U')) THEN
*
* Form A when upper triangle is stored in AP.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 20 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(J)
TEMP2 = ALPHA*X(J)
K = KK
DO 10 I = 1,J
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
K = K + 1
10 CONTINUE
END IF
KK = KK + J
20 CONTINUE
ELSE
DO 40 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(JY)
TEMP2 = ALPHA*X(JX)
IX = KX
IY = KY
DO 30 K = KK,KK + J - 1
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
30 CONTINUE
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + J
40 CONTINUE
END IF
ELSE
*
* Form A when lower triangle is stored in AP.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(J)
TEMP2 = ALPHA*X(J)
K = KK
DO 50 I = J,N
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
K = K + 1
50 CONTINUE
END IF
KK = KK + N - J + 1
60 CONTINUE
ELSE
DO 80 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*Y(JY)
TEMP2 = ALPHA*X(JX)
IX = JX
IY = JY
DO 70 K = KK,KK + N - J
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + N - J + 1
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of SSPR2 .
*
END

View File

@ -1,255 +0,0 @@
SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
* .. Scalar Arguments ..
DOUBLE COMPLEX ALPHA
INTEGER INCX,INCY,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
DOUBLE COMPLEX AP(*),X(*),Y(*)
* ..
*
* Purpose
* =======
*
* ZHPR2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n hermitian matrix, supplied in packed form.
*
* Arguments
* ==========
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the matrix A is supplied in the packed
* array AP as follows:
*
* UPLO = 'U' or 'u' The upper triangular part of A is
* supplied in AP.
*
* UPLO = 'L' or 'l' The lower triangular part of A is
* supplied in AP.
*
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the order of the matrix A.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - COMPLEX*16 .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* X - COMPLEX*16 array of dimension at least
* ( 1 + ( n - 1 )*abs( INCX ) ).
* Before entry, the incremented array X must contain the n
* element vector x.
* Unchanged on exit.
*
* INCX - INTEGER.
* On entry, INCX specifies the increment for the elements of
* X. INCX must not be zero.
* Unchanged on exit.
*
* Y - COMPLEX*16 array of dimension at least
* ( 1 + ( n - 1 )*abs( INCY ) ).
* Before entry, the incremented array Y must contain the n
* element vector y.
* Unchanged on exit.
*
* INCY - INTEGER.
* On entry, INCY specifies the increment for the elements of
* Y. INCY must not be zero.
* Unchanged on exit.
*
* AP - COMPLEX*16 array of DIMENSION at least
* ( ( n*( n + 1 ) )/2 ).
* Before entry with UPLO = 'U' or 'u', the array AP must
* contain the upper triangular part of the hermitian matrix
* packed sequentially, column by column, so that AP( 1 )
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
* and a( 2, 2 ) respectively, and so on. On exit, the array
* AP is overwritten by the upper triangular part of the
* updated matrix.
* Before entry with UPLO = 'L' or 'l', the array AP must
* contain the lower triangular part of the hermitian matrix
* packed sequentially, column by column, so that AP( 1 )
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
* and a( 3, 1 ) respectively, and so on. On exit, the array
* AP is overwritten by the lower triangular part of the
* updated matrix.
* Note that the imaginary parts of the diagonal elements need
* not be set, they are assumed to be zero, and on exit they
* are set to zero.
*
* Further Details
* ===============
*
* Level 2 Blas routine.
*
* -- Written on 22-October-1986.
* Jack Dongarra, Argonne National Lab.
* Jeremy Du Croz, Nag Central Office.
* Sven Hammarling, Nag Central Office.
* Richard Hanson, Sandia National Labs.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE COMPLEX ZERO
PARAMETER (ZERO= (0.0D+0,0.0D+0))
* ..
* .. Local Scalars ..
DOUBLE COMPLEX TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE,DCONJG
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('ZHPR2 ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Set up the start points in X and Y if the increments are not both
* unity.
*
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
JX = KX
JY = KY
END IF
*
* Start the operations. In this version the elements of the array AP
* are accessed sequentially with one pass through AP.
*
KK = 1
IF (LSAME(UPLO,'U')) THEN
*
* Form A when upper triangle is stored in AP.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 20 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*DCONJG(Y(J))
TEMP2 = DCONJG(ALPHA*X(J))
K = KK
DO 10 I = 1,J - 1
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
K = K + 1
10 CONTINUE
AP(KK+J-1) = DBLE(AP(KK+J-1)) +
+ DBLE(X(J)*TEMP1+Y(J)*TEMP2)
ELSE
AP(KK+J-1) = DBLE(AP(KK+J-1))
END IF
KK = KK + J
20 CONTINUE
ELSE
DO 40 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*DCONJG(Y(JY))
TEMP2 = DCONJG(ALPHA*X(JX))
IX = KX
IY = KY
DO 30 K = KK,KK + J - 2
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
30 CONTINUE
AP(KK+J-1) = DBLE(AP(KK+J-1)) +
+ DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
ELSE
AP(KK+J-1) = DBLE(AP(KK+J-1))
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + J
40 CONTINUE
END IF
ELSE
*
* Form A when lower triangle is stored in AP.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*DCONJG(Y(J))
TEMP2 = DCONJG(ALPHA*X(J))
AP(KK) = DBLE(AP(KK)) +
+ DBLE(X(J)*TEMP1+Y(J)*TEMP2)
K = KK + 1
DO 50 I = J + 1,N
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
K = K + 1
50 CONTINUE
ELSE
AP(KK) = DBLE(AP(KK))
END IF
KK = KK + N - J + 1
60 CONTINUE
ELSE
DO 80 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*DCONJG(Y(JY))
TEMP2 = DCONJG(ALPHA*X(JX))
AP(KK) = DBLE(AP(KK)) +
+ DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
IX = JX
IY = JY
DO 70 K = KK + 1,KK + N - J
IX = IX + INCX
IY = IY + INCY
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
70 CONTINUE
ELSE
AP(KK) = DBLE(AP(KK))
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + N - J + 1
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of ZHPR2 .
*
END