mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Comment FIXMEs on Rank2Update.h and remove unused files.
This commit is contained in:
parent
e4e7585a24
commit
17c746523e
@ -23,13 +23,12 @@ struct rank2_update_selector<Scalar,Index,Upper>
|
|||||||
{
|
{
|
||||||
static void run(Index size, Scalar* mat, Index stride, const Scalar* _u, const Scalar* _v, Scalar alpha)
|
static void run(Index size, Scalar* mat, Index stride, const Scalar* _u, const Scalar* _v, Scalar alpha)
|
||||||
{
|
{
|
||||||
typedef Matrix<Scalar,Dynamic,1> PlainVector;
|
Map<const Matrix<Scalar,Dynamic,1> > u(_u, size), v(_v, size);
|
||||||
Map<const PlainVector> u(_u, size), v(_v, size);
|
|
||||||
|
|
||||||
for (Index i=0; i<size; ++i)
|
for (Index i=0; i<size; ++i)
|
||||||
{
|
{
|
||||||
Map<PlainVector>(mat+stride*i, i+1) += conj(alpha) * conj(_u[i]) * v.head(i+1)
|
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i, i+1) +=
|
||||||
+ alpha * conj(_v[i]) * u.head(i+1);
|
conj(alpha) * conj(_u[i]) * v.head(i+1)
|
||||||
|
+ alpha * conj(_v[i]) * u.head(i+1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@ -39,13 +38,12 @@ struct rank2_update_selector<Scalar,Index,Lower>
|
|||||||
{
|
{
|
||||||
static void run(Index size, Scalar* mat, Index stride, const Scalar* _u, const Scalar* _v, Scalar alpha)
|
static void run(Index size, Scalar* mat, Index stride, const Scalar* _u, const Scalar* _v, Scalar alpha)
|
||||||
{
|
{
|
||||||
typedef Matrix<Scalar,Dynamic,1> PlainVector;
|
Map<const Matrix<Scalar,Dynamic,1> > u(_u, size), v(_v, size);
|
||||||
Map<const PlainVector> u(_u, size), v(_v, size);
|
|
||||||
|
|
||||||
for (Index i=0; i<size; ++i)
|
for (Index i=0; i<size; ++i)
|
||||||
{
|
{
|
||||||
Map<PlainVector>(mat+(stride+1)*i, size-i) += conj(alpha) * conj(_u[i]) * v.tail(size-i)
|
Map<Matrix<Scalar,Dynamic,1> >(mat+(stride+1)*i, size-i) +=
|
||||||
+ alpha * conj(_v[i]) * u.tail(size-i);
|
conj(alpha) * conj(_u[i]) * v.tail(size-i)
|
||||||
|
+ alpha * conj(_v[i]) * u.tail(size-i);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@ -61,16 +59,16 @@ struct packed_rank2_update_selector<Scalar,Index,Upper>
|
|||||||
{
|
{
|
||||||
static void run(Index size, Scalar* mat, const Scalar* _u, const Scalar* _v, Scalar alpha)
|
static void run(Index size, Scalar* mat, const Scalar* _u, const Scalar* _v, Scalar alpha)
|
||||||
{
|
{
|
||||||
typedef Matrix<Scalar,Dynamic,1> PlainVector;
|
Map<const Matrix<Scalar,Dynamic,1> > u(_u, size), v(_v, size);
|
||||||
Map<const PlainVector> u(_u, size), v(_v, size);
|
|
||||||
Index offset = 0;
|
Index offset = 0;
|
||||||
|
|
||||||
for (Index i=0; i<size; ++i)
|
for (Index i=0; i<size; ++i)
|
||||||
{
|
{
|
||||||
offset += i;
|
Map<Matrix<Scalar,Dynamic,1> >(mat+offset, i+1) +=
|
||||||
Map<PlainVector>(mat+offset, i+1) += conj(alpha) * conj(_u[i]) * v.head(i+1)
|
conj(alpha) * conj(_u[i]) * v.head(i+1)
|
||||||
+ alpha * conj(_v[i]) * u.head(i+1);
|
+ alpha * conj(_v[i]) * u.head(i+1);
|
||||||
|
//FIXME This should be handled outside.
|
||||||
mat[offset+i] = real(mat[offset+i]);
|
mat[offset+i] = real(mat[offset+i]);
|
||||||
|
offset += i+1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
@ -80,14 +78,14 @@ struct packed_rank2_update_selector<Scalar,Index,Lower>
|
|||||||
{
|
{
|
||||||
static void run(Index size, Scalar* mat, const Scalar* _u, const Scalar* _v, Scalar alpha)
|
static void run(Index size, Scalar* mat, const Scalar* _u, const Scalar* _v, Scalar alpha)
|
||||||
{
|
{
|
||||||
typedef Matrix<Scalar,Dynamic,1> PlainVector;
|
Map<const Matrix<Scalar,Dynamic,1> > u(_u, size), v(_v, size);
|
||||||
Map<const PlainVector> u(_u, size), v(_v, size);
|
|
||||||
Index offset = 0;
|
Index offset = 0;
|
||||||
|
|
||||||
for (Index i=0; i<size; ++i)
|
for (Index i=0; i<size; ++i)
|
||||||
{
|
{
|
||||||
Map<PlainVector>(mat+offset, size-i) += conj(alpha) * conj(_u[i]) * v.tail(size-i)
|
Map<Matrix<Scalar,Dynamic,1> >(mat+offset, size-i) +=
|
||||||
+ alpha * conj(_v[i]) * u.tail(size-i);
|
conj(alpha) * conj(_u[i]) * v.tail(size-i)
|
||||||
|
+ alpha * conj(_v[i]) * u.tail(size-i);
|
||||||
|
//FIXME This should be handled outside.
|
||||||
mat[offset] = real(mat[offset]);
|
mat[offset] = real(mat[offset]);
|
||||||
offset += size-i;
|
offset += size-i;
|
||||||
}
|
}
|
||||||
|
255
blas/chpr2.f
255
blas/chpr2.f
@ -1,255 +0,0 @@
|
|||||||
SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
|
|
||||||
* .. Scalar Arguments ..
|
|
||||||
COMPLEX ALPHA
|
|
||||||
INTEGER INCX,INCY,N
|
|
||||||
CHARACTER UPLO
|
|
||||||
* ..
|
|
||||||
* .. Array Arguments ..
|
|
||||||
COMPLEX AP(*),X(*),Y(*)
|
|
||||||
* ..
|
|
||||||
*
|
|
||||||
* Purpose
|
|
||||||
* =======
|
|
||||||
*
|
|
||||||
* CHPR2 performs the hermitian rank 2 operation
|
|
||||||
*
|
|
||||||
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
|
||||||
*
|
|
||||||
* where alpha is a scalar, x and y are n element vectors and A is an
|
|
||||||
* n by n hermitian matrix, supplied in packed form.
|
|
||||||
*
|
|
||||||
* Arguments
|
|
||||||
* ==========
|
|
||||||
*
|
|
||||||
* UPLO - CHARACTER*1.
|
|
||||||
* On entry, UPLO specifies whether the upper or lower
|
|
||||||
* triangular part of the matrix A is supplied in the packed
|
|
||||||
* array AP as follows:
|
|
||||||
*
|
|
||||||
* UPLO = 'U' or 'u' The upper triangular part of A is
|
|
||||||
* supplied in AP.
|
|
||||||
*
|
|
||||||
* UPLO = 'L' or 'l' The lower triangular part of A is
|
|
||||||
* supplied in AP.
|
|
||||||
*
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* N - INTEGER.
|
|
||||||
* On entry, N specifies the order of the matrix A.
|
|
||||||
* N must be at least zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* ALPHA - COMPLEX .
|
|
||||||
* On entry, ALPHA specifies the scalar alpha.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* X - COMPLEX array of dimension at least
|
|
||||||
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
|
||||||
* Before entry, the incremented array X must contain the n
|
|
||||||
* element vector x.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* INCX - INTEGER.
|
|
||||||
* On entry, INCX specifies the increment for the elements of
|
|
||||||
* X. INCX must not be zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* Y - COMPLEX array of dimension at least
|
|
||||||
* ( 1 + ( n - 1 )*abs( INCY ) ).
|
|
||||||
* Before entry, the incremented array Y must contain the n
|
|
||||||
* element vector y.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* INCY - INTEGER.
|
|
||||||
* On entry, INCY specifies the increment for the elements of
|
|
||||||
* Y. INCY must not be zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* AP - COMPLEX array of DIMENSION at least
|
|
||||||
* ( ( n*( n + 1 ) )/2 ).
|
|
||||||
* Before entry with UPLO = 'U' or 'u', the array AP must
|
|
||||||
* contain the upper triangular part of the hermitian matrix
|
|
||||||
* packed sequentially, column by column, so that AP( 1 )
|
|
||||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
|
||||||
* and a( 2, 2 ) respectively, and so on. On exit, the array
|
|
||||||
* AP is overwritten by the upper triangular part of the
|
|
||||||
* updated matrix.
|
|
||||||
* Before entry with UPLO = 'L' or 'l', the array AP must
|
|
||||||
* contain the lower triangular part of the hermitian matrix
|
|
||||||
* packed sequentially, column by column, so that AP( 1 )
|
|
||||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
|
||||||
* and a( 3, 1 ) respectively, and so on. On exit, the array
|
|
||||||
* AP is overwritten by the lower triangular part of the
|
|
||||||
* updated matrix.
|
|
||||||
* Note that the imaginary parts of the diagonal elements need
|
|
||||||
* not be set, they are assumed to be zero, and on exit they
|
|
||||||
* are set to zero.
|
|
||||||
*
|
|
||||||
* Further Details
|
|
||||||
* ===============
|
|
||||||
*
|
|
||||||
* Level 2 Blas routine.
|
|
||||||
*
|
|
||||||
* -- Written on 22-October-1986.
|
|
||||||
* Jack Dongarra, Argonne National Lab.
|
|
||||||
* Jeremy Du Croz, Nag Central Office.
|
|
||||||
* Sven Hammarling, Nag Central Office.
|
|
||||||
* Richard Hanson, Sandia National Labs.
|
|
||||||
*
|
|
||||||
* =====================================================================
|
|
||||||
*
|
|
||||||
* .. Parameters ..
|
|
||||||
COMPLEX ZERO
|
|
||||||
PARAMETER (ZERO= (0.0E+0,0.0E+0))
|
|
||||||
* ..
|
|
||||||
* .. Local Scalars ..
|
|
||||||
COMPLEX TEMP1,TEMP2
|
|
||||||
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
|
|
||||||
* ..
|
|
||||||
* .. External Functions ..
|
|
||||||
LOGICAL LSAME
|
|
||||||
EXTERNAL LSAME
|
|
||||||
* ..
|
|
||||||
* .. External Subroutines ..
|
|
||||||
EXTERNAL XERBLA
|
|
||||||
* ..
|
|
||||||
* .. Intrinsic Functions ..
|
|
||||||
INTRINSIC CONJG,REAL
|
|
||||||
* ..
|
|
||||||
*
|
|
||||||
* Test the input parameters.
|
|
||||||
*
|
|
||||||
INFO = 0
|
|
||||||
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
|
||||||
INFO = 1
|
|
||||||
ELSE IF (N.LT.0) THEN
|
|
||||||
INFO = 2
|
|
||||||
ELSE IF (INCX.EQ.0) THEN
|
|
||||||
INFO = 5
|
|
||||||
ELSE IF (INCY.EQ.0) THEN
|
|
||||||
INFO = 7
|
|
||||||
END IF
|
|
||||||
IF (INFO.NE.0) THEN
|
|
||||||
CALL XERBLA('CHPR2 ',INFO)
|
|
||||||
RETURN
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
* Quick return if possible.
|
|
||||||
*
|
|
||||||
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
|
|
||||||
*
|
|
||||||
* Set up the start points in X and Y if the increments are not both
|
|
||||||
* unity.
|
|
||||||
*
|
|
||||||
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
|
|
||||||
IF (INCX.GT.0) THEN
|
|
||||||
KX = 1
|
|
||||||
ELSE
|
|
||||||
KX = 1 - (N-1)*INCX
|
|
||||||
END IF
|
|
||||||
IF (INCY.GT.0) THEN
|
|
||||||
KY = 1
|
|
||||||
ELSE
|
|
||||||
KY = 1 - (N-1)*INCY
|
|
||||||
END IF
|
|
||||||
JX = KX
|
|
||||||
JY = KY
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
* Start the operations. In this version the elements of the array AP
|
|
||||||
* are accessed sequentially with one pass through AP.
|
|
||||||
*
|
|
||||||
KK = 1
|
|
||||||
IF (LSAME(UPLO,'U')) THEN
|
|
||||||
*
|
|
||||||
* Form A when upper triangle is stored in AP.
|
|
||||||
*
|
|
||||||
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
|
||||||
DO 20 J = 1,N
|
|
||||||
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*CONJG(Y(J))
|
|
||||||
TEMP2 = CONJG(ALPHA*X(J))
|
|
||||||
K = KK
|
|
||||||
DO 10 I = 1,J - 1
|
|
||||||
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
|
|
||||||
K = K + 1
|
|
||||||
10 CONTINUE
|
|
||||||
AP(KK+J-1) = REAL(AP(KK+J-1)) +
|
|
||||||
+ REAL(X(J)*TEMP1+Y(J)*TEMP2)
|
|
||||||
ELSE
|
|
||||||
AP(KK+J-1) = REAL(AP(KK+J-1))
|
|
||||||
END IF
|
|
||||||
KK = KK + J
|
|
||||||
20 CONTINUE
|
|
||||||
ELSE
|
|
||||||
DO 40 J = 1,N
|
|
||||||
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*CONJG(Y(JY))
|
|
||||||
TEMP2 = CONJG(ALPHA*X(JX))
|
|
||||||
IX = KX
|
|
||||||
IY = KY
|
|
||||||
DO 30 K = KK,KK + J - 2
|
|
||||||
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
|
|
||||||
IX = IX + INCX
|
|
||||||
IY = IY + INCY
|
|
||||||
30 CONTINUE
|
|
||||||
AP(KK+J-1) = REAL(AP(KK+J-1)) +
|
|
||||||
+ REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
|
|
||||||
ELSE
|
|
||||||
AP(KK+J-1) = REAL(AP(KK+J-1))
|
|
||||||
END IF
|
|
||||||
JX = JX + INCX
|
|
||||||
JY = JY + INCY
|
|
||||||
KK = KK + J
|
|
||||||
40 CONTINUE
|
|
||||||
END IF
|
|
||||||
ELSE
|
|
||||||
*
|
|
||||||
* Form A when lower triangle is stored in AP.
|
|
||||||
*
|
|
||||||
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
|
||||||
DO 60 J = 1,N
|
|
||||||
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*CONJG(Y(J))
|
|
||||||
TEMP2 = CONJG(ALPHA*X(J))
|
|
||||||
AP(KK) = REAL(AP(KK)) +
|
|
||||||
+ REAL(X(J)*TEMP1+Y(J)*TEMP2)
|
|
||||||
K = KK + 1
|
|
||||||
DO 50 I = J + 1,N
|
|
||||||
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
|
|
||||||
K = K + 1
|
|
||||||
50 CONTINUE
|
|
||||||
ELSE
|
|
||||||
AP(KK) = REAL(AP(KK))
|
|
||||||
END IF
|
|
||||||
KK = KK + N - J + 1
|
|
||||||
60 CONTINUE
|
|
||||||
ELSE
|
|
||||||
DO 80 J = 1,N
|
|
||||||
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*CONJG(Y(JY))
|
|
||||||
TEMP2 = CONJG(ALPHA*X(JX))
|
|
||||||
AP(KK) = REAL(AP(KK)) +
|
|
||||||
+ REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
|
|
||||||
IX = JX
|
|
||||||
IY = JY
|
|
||||||
DO 70 K = KK + 1,KK + N - J
|
|
||||||
IX = IX + INCX
|
|
||||||
IY = IY + INCY
|
|
||||||
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
|
|
||||||
70 CONTINUE
|
|
||||||
ELSE
|
|
||||||
AP(KK) = REAL(AP(KK))
|
|
||||||
END IF
|
|
||||||
JX = JX + INCX
|
|
||||||
JY = JY + INCY
|
|
||||||
KK = KK + N - J + 1
|
|
||||||
80 CONTINUE
|
|
||||||
END IF
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
RETURN
|
|
||||||
*
|
|
||||||
* End of CHPR2 .
|
|
||||||
*
|
|
||||||
END
|
|
233
blas/dspr2.f
233
blas/dspr2.f
@ -1,233 +0,0 @@
|
|||||||
SUBROUTINE DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
|
|
||||||
* .. Scalar Arguments ..
|
|
||||||
DOUBLE PRECISION ALPHA
|
|
||||||
INTEGER INCX,INCY,N
|
|
||||||
CHARACTER UPLO
|
|
||||||
* ..
|
|
||||||
* .. Array Arguments ..
|
|
||||||
DOUBLE PRECISION AP(*),X(*),Y(*)
|
|
||||||
* ..
|
|
||||||
*
|
|
||||||
* Purpose
|
|
||||||
* =======
|
|
||||||
*
|
|
||||||
* DSPR2 performs the symmetric rank 2 operation
|
|
||||||
*
|
|
||||||
* A := alpha*x*y' + alpha*y*x' + A,
|
|
||||||
*
|
|
||||||
* where alpha is a scalar, x and y are n element vectors and A is an
|
|
||||||
* n by n symmetric matrix, supplied in packed form.
|
|
||||||
*
|
|
||||||
* Arguments
|
|
||||||
* ==========
|
|
||||||
*
|
|
||||||
* UPLO - CHARACTER*1.
|
|
||||||
* On entry, UPLO specifies whether the upper or lower
|
|
||||||
* triangular part of the matrix A is supplied in the packed
|
|
||||||
* array AP as follows:
|
|
||||||
*
|
|
||||||
* UPLO = 'U' or 'u' The upper triangular part of A is
|
|
||||||
* supplied in AP.
|
|
||||||
*
|
|
||||||
* UPLO = 'L' or 'l' The lower triangular part of A is
|
|
||||||
* supplied in AP.
|
|
||||||
*
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* N - INTEGER.
|
|
||||||
* On entry, N specifies the order of the matrix A.
|
|
||||||
* N must be at least zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* ALPHA - DOUBLE PRECISION.
|
|
||||||
* On entry, ALPHA specifies the scalar alpha.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* X - DOUBLE PRECISION array of dimension at least
|
|
||||||
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
|
||||||
* Before entry, the incremented array X must contain the n
|
|
||||||
* element vector x.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* INCX - INTEGER.
|
|
||||||
* On entry, INCX specifies the increment for the elements of
|
|
||||||
* X. INCX must not be zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* Y - DOUBLE PRECISION array of dimension at least
|
|
||||||
* ( 1 + ( n - 1 )*abs( INCY ) ).
|
|
||||||
* Before entry, the incremented array Y must contain the n
|
|
||||||
* element vector y.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* INCY - INTEGER.
|
|
||||||
* On entry, INCY specifies the increment for the elements of
|
|
||||||
* Y. INCY must not be zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* AP - DOUBLE PRECISION array of DIMENSION at least
|
|
||||||
* ( ( n*( n + 1 ) )/2 ).
|
|
||||||
* Before entry with UPLO = 'U' or 'u', the array AP must
|
|
||||||
* contain the upper triangular part of the symmetric matrix
|
|
||||||
* packed sequentially, column by column, so that AP( 1 )
|
|
||||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
|
||||||
* and a( 2, 2 ) respectively, and so on. On exit, the array
|
|
||||||
* AP is overwritten by the upper triangular part of the
|
|
||||||
* updated matrix.
|
|
||||||
* Before entry with UPLO = 'L' or 'l', the array AP must
|
|
||||||
* contain the lower triangular part of the symmetric matrix
|
|
||||||
* packed sequentially, column by column, so that AP( 1 )
|
|
||||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
|
||||||
* and a( 3, 1 ) respectively, and so on. On exit, the array
|
|
||||||
* AP is overwritten by the lower triangular part of the
|
|
||||||
* updated matrix.
|
|
||||||
*
|
|
||||||
* Further Details
|
|
||||||
* ===============
|
|
||||||
*
|
|
||||||
* Level 2 Blas routine.
|
|
||||||
*
|
|
||||||
* -- Written on 22-October-1986.
|
|
||||||
* Jack Dongarra, Argonne National Lab.
|
|
||||||
* Jeremy Du Croz, Nag Central Office.
|
|
||||||
* Sven Hammarling, Nag Central Office.
|
|
||||||
* Richard Hanson, Sandia National Labs.
|
|
||||||
*
|
|
||||||
* =====================================================================
|
|
||||||
*
|
|
||||||
* .. Parameters ..
|
|
||||||
DOUBLE PRECISION ZERO
|
|
||||||
PARAMETER (ZERO=0.0D+0)
|
|
||||||
* ..
|
|
||||||
* .. Local Scalars ..
|
|
||||||
DOUBLE PRECISION TEMP1,TEMP2
|
|
||||||
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
|
|
||||||
* ..
|
|
||||||
* .. External Functions ..
|
|
||||||
LOGICAL LSAME
|
|
||||||
EXTERNAL LSAME
|
|
||||||
* ..
|
|
||||||
* .. External Subroutines ..
|
|
||||||
EXTERNAL XERBLA
|
|
||||||
* ..
|
|
||||||
*
|
|
||||||
* Test the input parameters.
|
|
||||||
*
|
|
||||||
INFO = 0
|
|
||||||
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
|
||||||
INFO = 1
|
|
||||||
ELSE IF (N.LT.0) THEN
|
|
||||||
INFO = 2
|
|
||||||
ELSE IF (INCX.EQ.0) THEN
|
|
||||||
INFO = 5
|
|
||||||
ELSE IF (INCY.EQ.0) THEN
|
|
||||||
INFO = 7
|
|
||||||
END IF
|
|
||||||
IF (INFO.NE.0) THEN
|
|
||||||
CALL XERBLA('DSPR2 ',INFO)
|
|
||||||
RETURN
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
* Quick return if possible.
|
|
||||||
*
|
|
||||||
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
|
|
||||||
*
|
|
||||||
* Set up the start points in X and Y if the increments are not both
|
|
||||||
* unity.
|
|
||||||
*
|
|
||||||
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
|
|
||||||
IF (INCX.GT.0) THEN
|
|
||||||
KX = 1
|
|
||||||
ELSE
|
|
||||||
KX = 1 - (N-1)*INCX
|
|
||||||
END IF
|
|
||||||
IF (INCY.GT.0) THEN
|
|
||||||
KY = 1
|
|
||||||
ELSE
|
|
||||||
KY = 1 - (N-1)*INCY
|
|
||||||
END IF
|
|
||||||
JX = KX
|
|
||||||
JY = KY
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
* Start the operations. In this version the elements of the array AP
|
|
||||||
* are accessed sequentially with one pass through AP.
|
|
||||||
*
|
|
||||||
KK = 1
|
|
||||||
IF (LSAME(UPLO,'U')) THEN
|
|
||||||
*
|
|
||||||
* Form A when upper triangle is stored in AP.
|
|
||||||
*
|
|
||||||
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
|
||||||
DO 20 J = 1,N
|
|
||||||
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*Y(J)
|
|
||||||
TEMP2 = ALPHA*X(J)
|
|
||||||
K = KK
|
|
||||||
DO 10 I = 1,J
|
|
||||||
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
|
|
||||||
K = K + 1
|
|
||||||
10 CONTINUE
|
|
||||||
END IF
|
|
||||||
KK = KK + J
|
|
||||||
20 CONTINUE
|
|
||||||
ELSE
|
|
||||||
DO 40 J = 1,N
|
|
||||||
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*Y(JY)
|
|
||||||
TEMP2 = ALPHA*X(JX)
|
|
||||||
IX = KX
|
|
||||||
IY = KY
|
|
||||||
DO 30 K = KK,KK + J - 1
|
|
||||||
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
|
|
||||||
IX = IX + INCX
|
|
||||||
IY = IY + INCY
|
|
||||||
30 CONTINUE
|
|
||||||
END IF
|
|
||||||
JX = JX + INCX
|
|
||||||
JY = JY + INCY
|
|
||||||
KK = KK + J
|
|
||||||
40 CONTINUE
|
|
||||||
END IF
|
|
||||||
ELSE
|
|
||||||
*
|
|
||||||
* Form A when lower triangle is stored in AP.
|
|
||||||
*
|
|
||||||
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
|
||||||
DO 60 J = 1,N
|
|
||||||
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*Y(J)
|
|
||||||
TEMP2 = ALPHA*X(J)
|
|
||||||
K = KK
|
|
||||||
DO 50 I = J,N
|
|
||||||
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
|
|
||||||
K = K + 1
|
|
||||||
50 CONTINUE
|
|
||||||
END IF
|
|
||||||
KK = KK + N - J + 1
|
|
||||||
60 CONTINUE
|
|
||||||
ELSE
|
|
||||||
DO 80 J = 1,N
|
|
||||||
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*Y(JY)
|
|
||||||
TEMP2 = ALPHA*X(JX)
|
|
||||||
IX = JX
|
|
||||||
IY = JY
|
|
||||||
DO 70 K = KK,KK + N - J
|
|
||||||
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
|
|
||||||
IX = IX + INCX
|
|
||||||
IY = IY + INCY
|
|
||||||
70 CONTINUE
|
|
||||||
END IF
|
|
||||||
JX = JX + INCX
|
|
||||||
JY = JY + INCY
|
|
||||||
KK = KK + N - J + 1
|
|
||||||
80 CONTINUE
|
|
||||||
END IF
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
RETURN
|
|
||||||
*
|
|
||||||
* End of DSPR2 .
|
|
||||||
*
|
|
||||||
END
|
|
233
blas/sspr2.f
233
blas/sspr2.f
@ -1,233 +0,0 @@
|
|||||||
SUBROUTINE SSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
|
|
||||||
* .. Scalar Arguments ..
|
|
||||||
REAL ALPHA
|
|
||||||
INTEGER INCX,INCY,N
|
|
||||||
CHARACTER UPLO
|
|
||||||
* ..
|
|
||||||
* .. Array Arguments ..
|
|
||||||
REAL AP(*),X(*),Y(*)
|
|
||||||
* ..
|
|
||||||
*
|
|
||||||
* Purpose
|
|
||||||
* =======
|
|
||||||
*
|
|
||||||
* SSPR2 performs the symmetric rank 2 operation
|
|
||||||
*
|
|
||||||
* A := alpha*x*y' + alpha*y*x' + A,
|
|
||||||
*
|
|
||||||
* where alpha is a scalar, x and y are n element vectors and A is an
|
|
||||||
* n by n symmetric matrix, supplied in packed form.
|
|
||||||
*
|
|
||||||
* Arguments
|
|
||||||
* ==========
|
|
||||||
*
|
|
||||||
* UPLO - CHARACTER*1.
|
|
||||||
* On entry, UPLO specifies whether the upper or lower
|
|
||||||
* triangular part of the matrix A is supplied in the packed
|
|
||||||
* array AP as follows:
|
|
||||||
*
|
|
||||||
* UPLO = 'U' or 'u' The upper triangular part of A is
|
|
||||||
* supplied in AP.
|
|
||||||
*
|
|
||||||
* UPLO = 'L' or 'l' The lower triangular part of A is
|
|
||||||
* supplied in AP.
|
|
||||||
*
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* N - INTEGER.
|
|
||||||
* On entry, N specifies the order of the matrix A.
|
|
||||||
* N must be at least zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* ALPHA - REAL .
|
|
||||||
* On entry, ALPHA specifies the scalar alpha.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* X - REAL array of dimension at least
|
|
||||||
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
|
||||||
* Before entry, the incremented array X must contain the n
|
|
||||||
* element vector x.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* INCX - INTEGER.
|
|
||||||
* On entry, INCX specifies the increment for the elements of
|
|
||||||
* X. INCX must not be zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* Y - REAL array of dimension at least
|
|
||||||
* ( 1 + ( n - 1 )*abs( INCY ) ).
|
|
||||||
* Before entry, the incremented array Y must contain the n
|
|
||||||
* element vector y.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* INCY - INTEGER.
|
|
||||||
* On entry, INCY specifies the increment for the elements of
|
|
||||||
* Y. INCY must not be zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* AP - REAL array of DIMENSION at least
|
|
||||||
* ( ( n*( n + 1 ) )/2 ).
|
|
||||||
* Before entry with UPLO = 'U' or 'u', the array AP must
|
|
||||||
* contain the upper triangular part of the symmetric matrix
|
|
||||||
* packed sequentially, column by column, so that AP( 1 )
|
|
||||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
|
||||||
* and a( 2, 2 ) respectively, and so on. On exit, the array
|
|
||||||
* AP is overwritten by the upper triangular part of the
|
|
||||||
* updated matrix.
|
|
||||||
* Before entry with UPLO = 'L' or 'l', the array AP must
|
|
||||||
* contain the lower triangular part of the symmetric matrix
|
|
||||||
* packed sequentially, column by column, so that AP( 1 )
|
|
||||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
|
||||||
* and a( 3, 1 ) respectively, and so on. On exit, the array
|
|
||||||
* AP is overwritten by the lower triangular part of the
|
|
||||||
* updated matrix.
|
|
||||||
*
|
|
||||||
* Further Details
|
|
||||||
* ===============
|
|
||||||
*
|
|
||||||
* Level 2 Blas routine.
|
|
||||||
*
|
|
||||||
* -- Written on 22-October-1986.
|
|
||||||
* Jack Dongarra, Argonne National Lab.
|
|
||||||
* Jeremy Du Croz, Nag Central Office.
|
|
||||||
* Sven Hammarling, Nag Central Office.
|
|
||||||
* Richard Hanson, Sandia National Labs.
|
|
||||||
*
|
|
||||||
* =====================================================================
|
|
||||||
*
|
|
||||||
* .. Parameters ..
|
|
||||||
REAL ZERO
|
|
||||||
PARAMETER (ZERO=0.0E+0)
|
|
||||||
* ..
|
|
||||||
* .. Local Scalars ..
|
|
||||||
REAL TEMP1,TEMP2
|
|
||||||
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
|
|
||||||
* ..
|
|
||||||
* .. External Functions ..
|
|
||||||
LOGICAL LSAME
|
|
||||||
EXTERNAL LSAME
|
|
||||||
* ..
|
|
||||||
* .. External Subroutines ..
|
|
||||||
EXTERNAL XERBLA
|
|
||||||
* ..
|
|
||||||
*
|
|
||||||
* Test the input parameters.
|
|
||||||
*
|
|
||||||
INFO = 0
|
|
||||||
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
|
||||||
INFO = 1
|
|
||||||
ELSE IF (N.LT.0) THEN
|
|
||||||
INFO = 2
|
|
||||||
ELSE IF (INCX.EQ.0) THEN
|
|
||||||
INFO = 5
|
|
||||||
ELSE IF (INCY.EQ.0) THEN
|
|
||||||
INFO = 7
|
|
||||||
END IF
|
|
||||||
IF (INFO.NE.0) THEN
|
|
||||||
CALL XERBLA('SSPR2 ',INFO)
|
|
||||||
RETURN
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
* Quick return if possible.
|
|
||||||
*
|
|
||||||
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
|
|
||||||
*
|
|
||||||
* Set up the start points in X and Y if the increments are not both
|
|
||||||
* unity.
|
|
||||||
*
|
|
||||||
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
|
|
||||||
IF (INCX.GT.0) THEN
|
|
||||||
KX = 1
|
|
||||||
ELSE
|
|
||||||
KX = 1 - (N-1)*INCX
|
|
||||||
END IF
|
|
||||||
IF (INCY.GT.0) THEN
|
|
||||||
KY = 1
|
|
||||||
ELSE
|
|
||||||
KY = 1 - (N-1)*INCY
|
|
||||||
END IF
|
|
||||||
JX = KX
|
|
||||||
JY = KY
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
* Start the operations. In this version the elements of the array AP
|
|
||||||
* are accessed sequentially with one pass through AP.
|
|
||||||
*
|
|
||||||
KK = 1
|
|
||||||
IF (LSAME(UPLO,'U')) THEN
|
|
||||||
*
|
|
||||||
* Form A when upper triangle is stored in AP.
|
|
||||||
*
|
|
||||||
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
|
||||||
DO 20 J = 1,N
|
|
||||||
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*Y(J)
|
|
||||||
TEMP2 = ALPHA*X(J)
|
|
||||||
K = KK
|
|
||||||
DO 10 I = 1,J
|
|
||||||
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
|
|
||||||
K = K + 1
|
|
||||||
10 CONTINUE
|
|
||||||
END IF
|
|
||||||
KK = KK + J
|
|
||||||
20 CONTINUE
|
|
||||||
ELSE
|
|
||||||
DO 40 J = 1,N
|
|
||||||
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*Y(JY)
|
|
||||||
TEMP2 = ALPHA*X(JX)
|
|
||||||
IX = KX
|
|
||||||
IY = KY
|
|
||||||
DO 30 K = KK,KK + J - 1
|
|
||||||
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
|
|
||||||
IX = IX + INCX
|
|
||||||
IY = IY + INCY
|
|
||||||
30 CONTINUE
|
|
||||||
END IF
|
|
||||||
JX = JX + INCX
|
|
||||||
JY = JY + INCY
|
|
||||||
KK = KK + J
|
|
||||||
40 CONTINUE
|
|
||||||
END IF
|
|
||||||
ELSE
|
|
||||||
*
|
|
||||||
* Form A when lower triangle is stored in AP.
|
|
||||||
*
|
|
||||||
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
|
||||||
DO 60 J = 1,N
|
|
||||||
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*Y(J)
|
|
||||||
TEMP2 = ALPHA*X(J)
|
|
||||||
K = KK
|
|
||||||
DO 50 I = J,N
|
|
||||||
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
|
|
||||||
K = K + 1
|
|
||||||
50 CONTINUE
|
|
||||||
END IF
|
|
||||||
KK = KK + N - J + 1
|
|
||||||
60 CONTINUE
|
|
||||||
ELSE
|
|
||||||
DO 80 J = 1,N
|
|
||||||
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*Y(JY)
|
|
||||||
TEMP2 = ALPHA*X(JX)
|
|
||||||
IX = JX
|
|
||||||
IY = JY
|
|
||||||
DO 70 K = KK,KK + N - J
|
|
||||||
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
|
|
||||||
IX = IX + INCX
|
|
||||||
IY = IY + INCY
|
|
||||||
70 CONTINUE
|
|
||||||
END IF
|
|
||||||
JX = JX + INCX
|
|
||||||
JY = JY + INCY
|
|
||||||
KK = KK + N - J + 1
|
|
||||||
80 CONTINUE
|
|
||||||
END IF
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
RETURN
|
|
||||||
*
|
|
||||||
* End of SSPR2 .
|
|
||||||
*
|
|
||||||
END
|
|
255
blas/zhpr2.f
255
blas/zhpr2.f
@ -1,255 +0,0 @@
|
|||||||
SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
|
|
||||||
* .. Scalar Arguments ..
|
|
||||||
DOUBLE COMPLEX ALPHA
|
|
||||||
INTEGER INCX,INCY,N
|
|
||||||
CHARACTER UPLO
|
|
||||||
* ..
|
|
||||||
* .. Array Arguments ..
|
|
||||||
DOUBLE COMPLEX AP(*),X(*),Y(*)
|
|
||||||
* ..
|
|
||||||
*
|
|
||||||
* Purpose
|
|
||||||
* =======
|
|
||||||
*
|
|
||||||
* ZHPR2 performs the hermitian rank 2 operation
|
|
||||||
*
|
|
||||||
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
|
||||||
*
|
|
||||||
* where alpha is a scalar, x and y are n element vectors and A is an
|
|
||||||
* n by n hermitian matrix, supplied in packed form.
|
|
||||||
*
|
|
||||||
* Arguments
|
|
||||||
* ==========
|
|
||||||
*
|
|
||||||
* UPLO - CHARACTER*1.
|
|
||||||
* On entry, UPLO specifies whether the upper or lower
|
|
||||||
* triangular part of the matrix A is supplied in the packed
|
|
||||||
* array AP as follows:
|
|
||||||
*
|
|
||||||
* UPLO = 'U' or 'u' The upper triangular part of A is
|
|
||||||
* supplied in AP.
|
|
||||||
*
|
|
||||||
* UPLO = 'L' or 'l' The lower triangular part of A is
|
|
||||||
* supplied in AP.
|
|
||||||
*
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* N - INTEGER.
|
|
||||||
* On entry, N specifies the order of the matrix A.
|
|
||||||
* N must be at least zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* ALPHA - COMPLEX*16 .
|
|
||||||
* On entry, ALPHA specifies the scalar alpha.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* X - COMPLEX*16 array of dimension at least
|
|
||||||
* ( 1 + ( n - 1 )*abs( INCX ) ).
|
|
||||||
* Before entry, the incremented array X must contain the n
|
|
||||||
* element vector x.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* INCX - INTEGER.
|
|
||||||
* On entry, INCX specifies the increment for the elements of
|
|
||||||
* X. INCX must not be zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* Y - COMPLEX*16 array of dimension at least
|
|
||||||
* ( 1 + ( n - 1 )*abs( INCY ) ).
|
|
||||||
* Before entry, the incremented array Y must contain the n
|
|
||||||
* element vector y.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* INCY - INTEGER.
|
|
||||||
* On entry, INCY specifies the increment for the elements of
|
|
||||||
* Y. INCY must not be zero.
|
|
||||||
* Unchanged on exit.
|
|
||||||
*
|
|
||||||
* AP - COMPLEX*16 array of DIMENSION at least
|
|
||||||
* ( ( n*( n + 1 ) )/2 ).
|
|
||||||
* Before entry with UPLO = 'U' or 'u', the array AP must
|
|
||||||
* contain the upper triangular part of the hermitian matrix
|
|
||||||
* packed sequentially, column by column, so that AP( 1 )
|
|
||||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
|
||||||
* and a( 2, 2 ) respectively, and so on. On exit, the array
|
|
||||||
* AP is overwritten by the upper triangular part of the
|
|
||||||
* updated matrix.
|
|
||||||
* Before entry with UPLO = 'L' or 'l', the array AP must
|
|
||||||
* contain the lower triangular part of the hermitian matrix
|
|
||||||
* packed sequentially, column by column, so that AP( 1 )
|
|
||||||
* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
|
||||||
* and a( 3, 1 ) respectively, and so on. On exit, the array
|
|
||||||
* AP is overwritten by the lower triangular part of the
|
|
||||||
* updated matrix.
|
|
||||||
* Note that the imaginary parts of the diagonal elements need
|
|
||||||
* not be set, they are assumed to be zero, and on exit they
|
|
||||||
* are set to zero.
|
|
||||||
*
|
|
||||||
* Further Details
|
|
||||||
* ===============
|
|
||||||
*
|
|
||||||
* Level 2 Blas routine.
|
|
||||||
*
|
|
||||||
* -- Written on 22-October-1986.
|
|
||||||
* Jack Dongarra, Argonne National Lab.
|
|
||||||
* Jeremy Du Croz, Nag Central Office.
|
|
||||||
* Sven Hammarling, Nag Central Office.
|
|
||||||
* Richard Hanson, Sandia National Labs.
|
|
||||||
*
|
|
||||||
* =====================================================================
|
|
||||||
*
|
|
||||||
* .. Parameters ..
|
|
||||||
DOUBLE COMPLEX ZERO
|
|
||||||
PARAMETER (ZERO= (0.0D+0,0.0D+0))
|
|
||||||
* ..
|
|
||||||
* .. Local Scalars ..
|
|
||||||
DOUBLE COMPLEX TEMP1,TEMP2
|
|
||||||
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
|
|
||||||
* ..
|
|
||||||
* .. External Functions ..
|
|
||||||
LOGICAL LSAME
|
|
||||||
EXTERNAL LSAME
|
|
||||||
* ..
|
|
||||||
* .. External Subroutines ..
|
|
||||||
EXTERNAL XERBLA
|
|
||||||
* ..
|
|
||||||
* .. Intrinsic Functions ..
|
|
||||||
INTRINSIC DBLE,DCONJG
|
|
||||||
* ..
|
|
||||||
*
|
|
||||||
* Test the input parameters.
|
|
||||||
*
|
|
||||||
INFO = 0
|
|
||||||
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
|
||||||
INFO = 1
|
|
||||||
ELSE IF (N.LT.0) THEN
|
|
||||||
INFO = 2
|
|
||||||
ELSE IF (INCX.EQ.0) THEN
|
|
||||||
INFO = 5
|
|
||||||
ELSE IF (INCY.EQ.0) THEN
|
|
||||||
INFO = 7
|
|
||||||
END IF
|
|
||||||
IF (INFO.NE.0) THEN
|
|
||||||
CALL XERBLA('ZHPR2 ',INFO)
|
|
||||||
RETURN
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
* Quick return if possible.
|
|
||||||
*
|
|
||||||
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
|
|
||||||
*
|
|
||||||
* Set up the start points in X and Y if the increments are not both
|
|
||||||
* unity.
|
|
||||||
*
|
|
||||||
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
|
|
||||||
IF (INCX.GT.0) THEN
|
|
||||||
KX = 1
|
|
||||||
ELSE
|
|
||||||
KX = 1 - (N-1)*INCX
|
|
||||||
END IF
|
|
||||||
IF (INCY.GT.0) THEN
|
|
||||||
KY = 1
|
|
||||||
ELSE
|
|
||||||
KY = 1 - (N-1)*INCY
|
|
||||||
END IF
|
|
||||||
JX = KX
|
|
||||||
JY = KY
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
* Start the operations. In this version the elements of the array AP
|
|
||||||
* are accessed sequentially with one pass through AP.
|
|
||||||
*
|
|
||||||
KK = 1
|
|
||||||
IF (LSAME(UPLO,'U')) THEN
|
|
||||||
*
|
|
||||||
* Form A when upper triangle is stored in AP.
|
|
||||||
*
|
|
||||||
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
|
||||||
DO 20 J = 1,N
|
|
||||||
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*DCONJG(Y(J))
|
|
||||||
TEMP2 = DCONJG(ALPHA*X(J))
|
|
||||||
K = KK
|
|
||||||
DO 10 I = 1,J - 1
|
|
||||||
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
|
|
||||||
K = K + 1
|
|
||||||
10 CONTINUE
|
|
||||||
AP(KK+J-1) = DBLE(AP(KK+J-1)) +
|
|
||||||
+ DBLE(X(J)*TEMP1+Y(J)*TEMP2)
|
|
||||||
ELSE
|
|
||||||
AP(KK+J-1) = DBLE(AP(KK+J-1))
|
|
||||||
END IF
|
|
||||||
KK = KK + J
|
|
||||||
20 CONTINUE
|
|
||||||
ELSE
|
|
||||||
DO 40 J = 1,N
|
|
||||||
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*DCONJG(Y(JY))
|
|
||||||
TEMP2 = DCONJG(ALPHA*X(JX))
|
|
||||||
IX = KX
|
|
||||||
IY = KY
|
|
||||||
DO 30 K = KK,KK + J - 2
|
|
||||||
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
|
|
||||||
IX = IX + INCX
|
|
||||||
IY = IY + INCY
|
|
||||||
30 CONTINUE
|
|
||||||
AP(KK+J-1) = DBLE(AP(KK+J-1)) +
|
|
||||||
+ DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
|
|
||||||
ELSE
|
|
||||||
AP(KK+J-1) = DBLE(AP(KK+J-1))
|
|
||||||
END IF
|
|
||||||
JX = JX + INCX
|
|
||||||
JY = JY + INCY
|
|
||||||
KK = KK + J
|
|
||||||
40 CONTINUE
|
|
||||||
END IF
|
|
||||||
ELSE
|
|
||||||
*
|
|
||||||
* Form A when lower triangle is stored in AP.
|
|
||||||
*
|
|
||||||
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
|
||||||
DO 60 J = 1,N
|
|
||||||
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*DCONJG(Y(J))
|
|
||||||
TEMP2 = DCONJG(ALPHA*X(J))
|
|
||||||
AP(KK) = DBLE(AP(KK)) +
|
|
||||||
+ DBLE(X(J)*TEMP1+Y(J)*TEMP2)
|
|
||||||
K = KK + 1
|
|
||||||
DO 50 I = J + 1,N
|
|
||||||
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
|
|
||||||
K = K + 1
|
|
||||||
50 CONTINUE
|
|
||||||
ELSE
|
|
||||||
AP(KK) = DBLE(AP(KK))
|
|
||||||
END IF
|
|
||||||
KK = KK + N - J + 1
|
|
||||||
60 CONTINUE
|
|
||||||
ELSE
|
|
||||||
DO 80 J = 1,N
|
|
||||||
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
|
|
||||||
TEMP1 = ALPHA*DCONJG(Y(JY))
|
|
||||||
TEMP2 = DCONJG(ALPHA*X(JX))
|
|
||||||
AP(KK) = DBLE(AP(KK)) +
|
|
||||||
+ DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
|
|
||||||
IX = JX
|
|
||||||
IY = JY
|
|
||||||
DO 70 K = KK + 1,KK + N - J
|
|
||||||
IX = IX + INCX
|
|
||||||
IY = IY + INCY
|
|
||||||
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
|
|
||||||
70 CONTINUE
|
|
||||||
ELSE
|
|
||||||
AP(KK) = DBLE(AP(KK))
|
|
||||||
END IF
|
|
||||||
JX = JX + INCX
|
|
||||||
JY = JY + INCY
|
|
||||||
KK = KK + N - J + 1
|
|
||||||
80 CONTINUE
|
|
||||||
END IF
|
|
||||||
END IF
|
|
||||||
*
|
|
||||||
RETURN
|
|
||||||
*
|
|
||||||
* End of ZHPR2 .
|
|
||||||
*
|
|
||||||
END
|
|
Loading…
x
Reference in New Issue
Block a user