Some minor optimization.

This commit is contained in:
giacomo po 2012-09-24 08:33:11 -07:00
parent dd7ff3f493
commit 18c41aa04f

View File

@ -40,23 +40,24 @@ namespace Eigen {
const int maxIters(iters); // initialize maxIters to iters
const int N(mat.cols()); // the size of the matrix
const RealScalar rhsNorm2(rhs.squaredNorm());
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
// Compute initial residual
const VectorType residual(rhs-mat*x);
RealScalar residualNorm2(residual.squaredNorm()); // not needed for original convergnce criterion
// // Compute initial residual
// const VectorType residual(rhs-mat*x);
// RealScalar residualNorm2(residual.squaredNorm());
// Initialize preconditioned Lanczos
VectorType v_old(N); // will be initialized inside loop
VectorType v = VectorType::Zero(N); //initialize v
VectorType v_new = residual; //initialize v_new
VectorType w(N); // will be initialized inside loop
VectorType w_new = precond.solve(v_new); // initialize w_new
RealScalar beta; // will be initialized inside loop
RealScalar beta_new2 = v_new.dot(w_new);
// VectorType v_old(N); // will be initialized inside loop
VectorType v( VectorType::Zero(N) ); //initialize v
VectorType v_new(rhs-mat*x); //initialize v_new
RealScalar residualNorm2(v_new.squaredNorm());
// VectorType w(N); // will be initialized inside loop
VectorType w_new(precond.solve(v_new)); // initialize w_new
// RealScalar beta; // will be initialized inside loop
RealScalar beta_new2(v_new.dot(w_new));
assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
RealScalar beta_new = sqrt(beta_new2);
RealScalar beta_one = beta_new;
RealScalar beta_new(sqrt(beta_new2));
const RealScalar beta_one(beta_new);
v_new /= beta_new;
w_new /= beta_new;
// Initialize other variables
@ -64,13 +65,15 @@ namespace Eigen {
RealScalar c_old(1.0);
RealScalar s(0.0); // the sine of the Givens rotation
RealScalar s_old(0.0); // the sine of the Givens rotation
VectorType p_oold(N); // will be initialized in loop
// VectorType p_oold(N); // will be initialized in loop
VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
VectorType p(p_old); // initialize p=0
RealScalar eta(1.0);
int n = 0;
while ( n < maxIters ){
//int n = 0;
iters = 0;
// while ( n < maxIters ){
while ( iters < maxIters ){
// Preconditioned Lanczos
/* Note that there are 4 variants on the Lanczos algorithm. These are
@ -78,14 +81,16 @@ namespace Eigen {
* the Lanczos method for the eigenproblem. IMA Journal of Applied
* Mathematics, 10(3), 373381. The current implementation corresonds
* to the case A(2,7) in the paper. It also corresponds to
* algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
* algorithm 6.14 in Y. Saad, Iterative Methods for Sparse Linear
* Systems, 2003 p.173. For the preconditioned version see
* A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
*/
beta = beta_new;
v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
const RealScalar beta(beta_new);
// v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
const VectorType v_old(v);
v = v_new; // update
w = w_new; // update
// w = w_new; // update
const VectorType w(w_new);
v_new.noalias() = mat*w - beta*v_old; // compute v_new
const RealScalar alpha = v_new.dot(w);
v_new -= alpha*v; // overwrite v_new
@ -107,7 +112,8 @@ namespace Eigen {
s=beta_new/r1; // new sine
// Update solution
p_oold = p_old;
// p_oold = p_old;
const VectorType p_oold(p_old);
p_old = p;
p=(w-r2*p_old-r3*p_oold) /r1;
x += beta_one*c*eta*p;
@ -118,10 +124,11 @@ namespace Eigen {
}
eta=-s*eta; // update eta
n++; // increment iteration
// n++; // increment iteration
iters++;
}
tol_error = std::sqrt(residualNorm2 / rhsNorm2); // return error
iters = n; // return number of iterations
// iters = n; // return number of iterations
}
}