mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
modernize HouseholderQR too, uniformize all that stuff, update tests
This commit is contained in:
parent
7e4bd70157
commit
191d5275a7
2
Eigen/QR
2
Eigen/QR
@ -35,7 +35,7 @@ namespace Eigen {
|
||||
* \endcode
|
||||
*/
|
||||
|
||||
#include "src/QR/QR.h"
|
||||
#include "src/QR/HouseholderQR.h"
|
||||
#include "src/QR/FullPivotingHouseholderQR.h"
|
||||
#include "src/QR/ColPivotingHouseholderQR.h"
|
||||
#include "src/QR/Tridiagonalization.h"
|
||||
|
@ -99,11 +99,15 @@ template<typename MatrixType> class ColPivotingHouseholderQR
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
MatrixType matrixQ(void) const;
|
||||
MatrixQType matrixQ(void) const;
|
||||
|
||||
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
||||
*/
|
||||
const MatrixType& matrixQR() const { return m_qr; }
|
||||
const MatrixType& matrixQR() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
return m_qr;
|
||||
}
|
||||
|
||||
ColPivotingHouseholderQR& compute(const MatrixType& matrix);
|
||||
|
||||
@ -363,9 +367,10 @@ bool ColPivotingHouseholderQR<MatrixType>::solve(
|
||||
// is c is in the image of R ?
|
||||
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff();
|
||||
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff();
|
||||
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
|
||||
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision*4))
|
||||
return false;
|
||||
}
|
||||
|
||||
m_qr.corner(TopLeft, m_rank, m_rank)
|
||||
.template triangularView<UpperTriangular>()
|
||||
.solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
|
||||
@ -377,7 +382,7 @@ bool ColPivotingHouseholderQR<MatrixType>::solve(
|
||||
|
||||
/** \returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
MatrixType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
typename ColPivotingHouseholderQR<MatrixType>::MatrixQType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
|
||||
// compute the product H'_0 H'_1 ... H'_n-1,
|
||||
@ -386,7 +391,7 @@ MatrixType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
int rows = m_qr.rows();
|
||||
int cols = m_qr.cols();
|
||||
int size = std::min(rows,cols);
|
||||
MatrixType res = MatrixType::Identity(rows, rows);
|
||||
MatrixQType res = MatrixQType::Identity(rows, rows);
|
||||
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
|
||||
for (int k = size-1; k >= 0; k--)
|
||||
{
|
||||
|
@ -97,11 +97,15 @@ template<typename MatrixType> class FullPivotingHouseholderQR
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
MatrixType matrixQ(void) const;
|
||||
MatrixQType matrixQ(void) const;
|
||||
|
||||
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
||||
*/
|
||||
const MatrixType& matrixQR() const { return m_qr; }
|
||||
const MatrixType& matrixQR() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
|
||||
return m_qr;
|
||||
}
|
||||
|
||||
FullPivotingHouseholderQR& compute(const MatrixType& matrix);
|
||||
|
||||
@ -391,7 +395,7 @@ bool FullPivotingHouseholderQR<MatrixType>::solve(
|
||||
|
||||
/** \returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
MatrixType FullPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
typename FullPivotingHouseholderQR<MatrixType>::MatrixQType FullPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
|
||||
// compute the product H'_0 H'_1 ... H'_n-1,
|
||||
@ -400,7 +404,7 @@ MatrixType FullPivotingHouseholderQR<MatrixType>::matrixQ() const
|
||||
int rows = m_qr.rows();
|
||||
int cols = m_qr.cols();
|
||||
int size = std::min(rows,cols);
|
||||
MatrixType res = MatrixType::Identity(rows, rows);
|
||||
MatrixQType res = MatrixQType::Identity(rows, rows);
|
||||
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
|
||||
for (int k = size-1; k >= 0; k--)
|
||||
{
|
||||
|
@ -2,6 +2,7 @@
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
@ -38,6 +39,10 @@
|
||||
* stored in a compact way compatible with LAPACK.
|
||||
*
|
||||
* Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
|
||||
* If you want that feature, use FullPivotingHouseholderQR or ColPivotingHouseholderQR instead.
|
||||
*
|
||||
* This Householder QR decomposition is faster, but less numerically stable and less feature-full than
|
||||
* FullPivotingHouseholderQR or ColPivotingHouseholderQR.
|
||||
*
|
||||
* \sa MatrixBase::householderQr()
|
||||
*/
|
||||
@ -46,15 +51,17 @@ template<typename MatrixType> class HouseholderQR
|
||||
public:
|
||||
|
||||
enum {
|
||||
MinSizeAtCompileTime = EIGEN_ENUM_MIN(MatrixType::ColsAtCompileTime,MatrixType::RowsAtCompileTime)
|
||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
Options = MatrixType::Options,
|
||||
DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
|
||||
};
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
|
||||
typedef Matrix<Scalar, MinSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
||||
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
|
||||
typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
|
||||
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
|
||||
|
||||
/**
|
||||
* \brief Default Constructor.
|
||||
@ -72,15 +79,6 @@ template<typename MatrixType> class HouseholderQR
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** \returns a read-only expression of the matrix R of the actual the QR decomposition */
|
||||
const TriangularView<NestByValue<MatrixRBlockType>, UpperTriangular>
|
||||
matrixR(void) const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
int cols = m_qr.cols();
|
||||
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template triangularView<UpperTriangular>();
|
||||
}
|
||||
|
||||
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
||||
* *this is the QR decomposition, if any exists.
|
||||
*
|
||||
@ -99,15 +97,48 @@ template<typename MatrixType> class HouseholderQR
|
||||
template<typename OtherDerived, typename ResultType>
|
||||
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
|
||||
|
||||
MatrixType matrixQ(void) const;
|
||||
MatrixQType matrixQ(void) const;
|
||||
|
||||
/** \returns a reference to the matrix where the Householder QR decomposition is stored
|
||||
* in a LAPACK-compatible way.
|
||||
*/
|
||||
const MatrixType& matrixQR() const { return m_qr; }
|
||||
const MatrixType& matrixQR() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
return m_qr;
|
||||
}
|
||||
|
||||
HouseholderQR& compute(const MatrixType& matrix);
|
||||
|
||||
/** \returns the absolute value of the determinant of the matrix of which
|
||||
* *this is the QR decomposition. It has only linear complexity
|
||||
* (that is, O(n) where n is the dimension of the square matrix)
|
||||
* as the QR decomposition has already been computed.
|
||||
*
|
||||
* \note This is only for square matrices.
|
||||
*
|
||||
* \warning a determinant can be very big or small, so for matrices
|
||||
* of large enough dimension, there is a risk of overflow/underflow.
|
||||
* One way to work around that is to use logAbsDeterminant() instead.
|
||||
*
|
||||
* \sa logAbsDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar absDeterminant() const;
|
||||
|
||||
/** \returns the natural log of the absolute value of the determinant of the matrix of which
|
||||
* *this is the QR decomposition. It has only linear complexity
|
||||
* (that is, O(n) where n is the dimension of the square matrix)
|
||||
* as the QR decomposition has already been computed.
|
||||
*
|
||||
* \note This is only for square matrices.
|
||||
*
|
||||
* \note This method is useful to work around the risk of overflow/underflow that's inherent
|
||||
* to determinant computation.
|
||||
*
|
||||
* \sa absDeterminant(), MatrixBase::determinant()
|
||||
*/
|
||||
typename MatrixType::RealScalar logAbsDeterminant() const;
|
||||
|
||||
protected:
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
@ -116,6 +147,22 @@ template<typename MatrixType> class HouseholderQR
|
||||
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
|
||||
template<typename MatrixType>
|
||||
typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
||||
return ei_abs(m_qr.diagonal().prod());
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
|
||||
return m_qr.diagonal().cwise().abs().cwise().log().sum();
|
||||
}
|
||||
|
||||
template<typename MatrixType>
|
||||
HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
|
||||
{
|
||||
@ -177,7 +224,7 @@ void HouseholderQR<MatrixType>::solve(
|
||||
|
||||
/** \returns the matrix Q */
|
||||
template<typename MatrixType>
|
||||
MatrixType HouseholderQR<MatrixType>::matrixQ() const
|
||||
typename HouseholderQR<MatrixType>::MatrixQType HouseholderQR<MatrixType>::matrixQ() const
|
||||
{
|
||||
ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
|
||||
// compute the product H'_0 H'_1 ... H'_n-1,
|
||||
@ -185,13 +232,13 @@ MatrixType HouseholderQR<MatrixType>::matrixQ() const
|
||||
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
|
||||
int rows = m_qr.rows();
|
||||
int cols = m_qr.cols();
|
||||
MatrixType res = MatrixType::Identity(rows, cols);
|
||||
Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
|
||||
for (int k = cols-1; k >= 0; k--)
|
||||
int size = std::min(rows,cols);
|
||||
MatrixQType res = MatrixQType::Identity(rows, rows);
|
||||
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
|
||||
for (int k = size-1; k >= 0; k--)
|
||||
{
|
||||
int remainingSize = rows-k;
|
||||
res.corner(BottomRight, remainingSize, cols-k)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
|
||||
res.block(k, k, rows-k, rows-k)
|
||||
.applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
|
||||
}
|
||||
return res;
|
||||
}
|
25
test/qr.cpp
25
test/qr.cpp
@ -27,7 +27,6 @@
|
||||
|
||||
template<typename MatrixType> void qr(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files: QR.h */
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
@ -37,8 +36,11 @@ template<typename MatrixType> void qr(const MatrixType& m)
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
HouseholderQR<MatrixType> qrOfA(a);
|
||||
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR().toDense());
|
||||
VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR().toDense());
|
||||
MatrixType r = qrOfA.matrixQR();
|
||||
// FIXME need better way to construct trapezoid
|
||||
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
|
||||
|
||||
VERIFY_IS_APPROX(a, qrOfA.matrixQ() * r);
|
||||
|
||||
SquareMatrixType b = a.adjoint() * a;
|
||||
|
||||
@ -57,8 +59,9 @@ template<typename MatrixType> void qr(const MatrixType& m)
|
||||
|
||||
template<typename MatrixType> void qr_invertible()
|
||||
{
|
||||
/* this test covers the following files: QR.h */
|
||||
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
int size = ei_random<int>(10,50);
|
||||
|
||||
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
||||
@ -75,6 +78,16 @@ template<typename MatrixType> void qr_invertible()
|
||||
m3 = MatrixType::Random(size,size);
|
||||
qr.solve(m3, &m2);
|
||||
VERIFY_IS_APPROX(m3, m1*m2);
|
||||
|
||||
// now construct a matrix with prescribed determinant
|
||||
m1.setZero();
|
||||
for(int i = 0; i < size; i++) m1(i,i) = ei_random<Scalar>();
|
||||
RealScalar absdet = ei_abs(m1.diagonal().prod());
|
||||
m3 = qr.matrixQ(); // get a unitary
|
||||
m1 = m3 * m1 * m3;
|
||||
qr.compute(m1);
|
||||
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
|
||||
VERIFY_IS_APPROX(ei_log(absdet), qr.logAbsDeterminant());
|
||||
}
|
||||
|
||||
template<typename MatrixType> void qr_verify_assert()
|
||||
@ -82,9 +95,11 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
MatrixType tmp;
|
||||
|
||||
HouseholderQR<MatrixType> qr;
|
||||
VERIFY_RAISES_ASSERT(qr.matrixR())
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
||||
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
||||
}
|
||||
|
||||
void test_qr()
|
||||
|
@ -101,9 +101,17 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
MatrixType tmp;
|
||||
|
||||
ColPivotingHouseholderQR<MatrixType> qr;
|
||||
VERIFY_RAISES_ASSERT(qr.matrixR())
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
|
||||
VERIFY_RAISES_ASSERT(qr.isInjective())
|
||||
VERIFY_RAISES_ASSERT(qr.isSurjective())
|
||||
VERIFY_RAISES_ASSERT(qr.isInvertible())
|
||||
VERIFY_RAISES_ASSERT(qr.computeInverse(&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.inverse())
|
||||
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
||||
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
||||
}
|
||||
|
||||
void test_qr_colpivoting()
|
||||
|
@ -105,7 +105,7 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
MatrixType tmp;
|
||||
|
||||
FullPivotingHouseholderQR<MatrixType> qr;
|
||||
VERIFY_RAISES_ASSERT(qr.matrixR())
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
||||
VERIFY_RAISES_ASSERT(qr.solve(tmp,&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.matrixQ())
|
||||
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
|
||||
@ -114,6 +114,8 @@ template<typename MatrixType> void qr_verify_assert()
|
||||
VERIFY_RAISES_ASSERT(qr.isInvertible())
|
||||
VERIFY_RAISES_ASSERT(qr.computeInverse(&tmp))
|
||||
VERIFY_RAISES_ASSERT(qr.inverse())
|
||||
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
||||
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
||||
}
|
||||
|
||||
void test_qr_fullpivoting()
|
||||
|
Loading…
x
Reference in New Issue
Block a user